Phase Solution Analysis for the Simultaneous Dual Frequency VLBI Observations

Taehyun Jung(KASI/UST), Bong Won Sohn(KASI), Hideyuki Kobayashi, Tetsuo Sasao, Tomoya Hirota, Osamu Kameya, Mareki Honma(NAOJ), Yoon Kyung Choi(MPIfR), Hyun Soo Chung(KASI)
0 0 1 _ INTRODUCTION
Korean VLBI Network (KVN)
Difficulties in mm VLBI
Phase Referencing Techniques

0 0 2 _ VERA DUAL FREQUENCY EXPERIMENT
1st Experiment
2nd Experiment

0 0 3 _ DISCUSSION & SUMMARY
Korean VLBI Network (KVN)

- The First VLBI facility in Korea
- Dedicated millimeter VLBI system
- Multi-Frequency Simultaneous Observation at 22, 43, 86, 129 GHz
- Fast switching & multi-freq. phase referencing
Difficulties in Ground-based VLBI System

• Heavy data load
• Operation & maintenance of distant stations
• Only highly bright & compact sources can be observed

But the largest difficulties come from

1. Unpredictable fluctuations in independent frequency standards
2. Highly irregular refraction effects in the atmosphere

(Dr. Sasao)

The 9th European VLBI Network Symposium 22-26 September 2008 Bologna Italy
Difficulties in mm-VLBI

Pico Veleta – Onsala Baseline

VLBI phase time series

Source: BL Lac
Frequency: 86 GHz

(Dr. A. Roy)
Phase Referencing Methods

- Fast Switching
- Water Vapor Radiometer
- Dual Beam Correction (VERA)
- Paired/Clustered Antennas
- Multi-Frequency Phase Referencing

(Dr. A. Roy)

(Dr. Asaki)

(VSOP)

(VERA)
Multi-Frequency Phase Referencing

• Basic Idea
 - Using the fringe phase of a source at a lower freq. in order to calibrate the phase of the same source at higher one.
 - The *non-dispersive nature* of the water vapor-induced excess path delay in the troposphere over the wide range of radio frequency.

\[
\frac{\partial \phi_{\text{high}}}{\partial t} = \left(\frac{v_{\text{high}}}{v_{\text{low}}} \right) \times \frac{\partial \phi_{\text{low}}}{\partial t}
\]

(Dr. Han)
Multi-Frequency Phase Referencing

- Multi-Frequency Phase Referencing will enable mm-VLBI (Dr. Sasao)

1) to essentially resolve the reference source problem and nearly always find a reference source for a target
 ∴ target source = reference source

2) to get a perfect phase compensation without any loss of coherence
 ∴ sky condition is exactly same

3) to integrate mm VLBI fringes as long as a single-dish telescope does

4) to detect and image as many sources as cm VLBI does
VERA Experiment

- The first experiment with a dual-freq. simultaneous observation using VERA

- Observation
 - 2005 Apr 15 (UT 14 ~ 21 hour)
 - Bandwidth 128 MHz, LL, Dual Mode Setting
 - Target Sources
 - 22 GHz with Beam A NRAO512
 - 43 GHz with Beam B 3C345
 - Separation Angle < 0.5 degree

- Testing the feasibility of the multi-frequency phase referencing
- Phase solution transfer from lower freq. to higher one
- Atmospheric delay compensation between 22 & 43 GHz
1st VERA Dual-Frequency Experiment

- Dual Mode Setting

NRAO 512
α = 16:40:29.6
δ = +39:46:46
beam A
(22 GHz)

3C345
α = 16:42:58.8
δ = +39:48:37
beam B
(43 GHz)
Phase Solutions with Solution interval 30sec

Red lines ~ 22GHz (NRAO512) Green line ~ 43GHz (3C345)
Phase Solutions at Mizusawa-Iriki Baseline -2-

Time (sec)

Phase (deg)

-200 -150 -100 -50 0 50 100 150 200

22GHz Phases (NRAO512)

43GHz Phases (3C345)

Connected Phases and Differential Phases

Time (sec)

65200 65400 65600 65800 66000 66200 66400 66600 66800

0 00 500 0 500 0 500 0 500 0 500

Connected Phase at 22GHz

Connected Phase at 43GHz

Differential Phases

Connected Phases and Differential Phases

Time (sec)

68600 68800 69000 69200 69400 69600 69800 70000

-400 -200 0 200 400 600 800

Connected Phase at 22GHz

Connected Phase at 43GHz

Differential Phases

Connected Phases and Differential Phases

Time (sec)

70200 70400 70600 70800 71000 71200 71400 71600

-800 -600 -400 -200 0 200 400 600

Connected Phase at 22GHz

Connected Phase at 43GHz

Differential Phases

Connected Phases and Differential Phases

Time (sec)

73400 73600 73800 74000 74200 74400 74600

-800 -600 -400 -200 0 200 400 600

Connected Phase at 22GHz

Connected Phase at 43GHz

Differential Phases

Connected Phases and Differential Phases

Time (sec)

75000 75200 75400 75600 75800 76000 76200 76400

-600 -400 -200 0 200 400 600 800

Connected Phase at 22GHz

Connected Phase at 43GHz

Differential Phases

Connected Phases and Differential Phases

Time (sec)

Phase Solutions -2-
• Both of fringe phases at 22 & 43 GHz show a typical behavior of the phases in VLBI, which is the flicker freq. noise for short time scale and white phase noise for a longer time scale.

• The differential phases are inversely proportional to τ, that means the effect of atmospheric fluctuation is effectively removed.
22GHz (NRAO512) → 3C345 → NRAO512 → …

Beam A: 3C345 → NROA512 → 3C345 → NRAO512 → …

Beam B: NROA512 → 3C345 → NRAO512 → 3C345 → …
• We were not able to get fringe phases of NRAO512 at 43 GHz (yellow scans) because it was not bright enough at this frequency.

• However, the other scans which are NRAO512 (22GHz) and 3C345 (43GHz) were observed and showed the repeatability of these experiments very well.
DISCUSSION & SUMMARY

• VLBI phases are suffering from many of effects such as, troposphere, ionosphere, sec Z effect, source structure, uncertainties of the source/station coordinates, clock offsets and instrumental delays and so on.

• We made a dual-frequency simultaneous observation at 22 & 43 GHz using VERA and analyzed phase solutions to test the feasibility of multi-frequency phase referencing for KVN.

• From the 1st experiment, we found some drift/sinusoidal tendency at differential phases. We have investigated what kind of effect could cause such a specific tendency.
Multi-freq. Phase Referencing vs Fast Frequency Switching

- Good possibility of Multi-freq. phase referencing technique with a strong correlation of phases at different frequencies

DISCUSSION & SUMMARY

(Middelberg et al)
The performance of multi-freq. phase referencing in KVN is expected to be much higher than this experiment because of using same source.

VLBI Imaging at higher freq. will be able to have a good chance with multi-freq. phase referencing:
- AGNs: Core shift, accretion, jet formation, black-holes etc…
- Masers: multi-line observation, environmental studies of evolved stars etc…

Multi-freq. phase referenced observation between KVN + VERA is near at hand.

Multi-frequency phase referencing in KVN is feasible.

The correlation between different frequencies of KVN is expected to be better than this experiment ($\rho > 0.96$).