Activity cycles of blazars and quasars from the VLBI observations

Nadia Kudryavtseva, Silke Britzen, Thomas Krichbaum, Arno Witzel, Eduardo Ros, Anton Zensus, Denise Gabuzda, Svetlana Jorstad, Margo Aller, Hugh Aller, Harri Teräsranta

Max-Planck-Institute for Radioastronomy, Bonn

9th EVN Symposium 23.09.2008

Fulfilled projects

Collaborators

- Silke Britzen, Thomas Krichbaum, Arno Witzel, Anton Zensus, Thomas Beckert, Eduardo Ros, Nicola Marchili, Marios Karouzos (MPIfR)
- Bob Campbell (JIVE)
- Tamara Pyatunina (IPA RAS)
- Denise Gabuzda (UCC Cork)
- Svetlana Jorstad (Uni. Boston)
- Jacques Roland (Institut d'Astrophysique)
- Margo Aller, Hugh Aller (Uni. Michigan))
- Harri Teräsranta, Merja Tornikoski, Kaj Wiik, Tapio Pursimo, Liza Rastorgueva (Metsahovi Observatory, Tuorla

2. Activity cycle of the blazar S5 1803+784

3. How the cycle evolves with time

958.660

4. AGN with periodical light curves and periodical optically thick flares

Summ

ary

1. Introduction

1. Introduction

Variability of Active Galactic Nuclei is very complicated – many complex

Evolution of a primary perturbation in the base of the jet

Activity cycles Evolution of a primary perturbation in the base of the jet

Observations

- 37 GHz

- 22 GHz

- 8 GHz • - 4.8 GHz

- 14.5 GHz

2004.0

10.0 r - How the jet structure **Core** outburst evolution is connected with outbursts? 8.0 Jet outburst - Which flares are coming from the core 6.0 and which from the jet? How long are the Calculated spectra, time lags, analyzed VLBI data, compared the total flux-2.0 2000.0 1996.0 density variability with Epoch, yr Aller et al 1985 the jet structure evolution Terasranta et al. 1995 Jorstad et al. 2001, **UMRAO** Metsahovi 43 GHz VLBI 2002 Monitoring Monitoring Monitoring + 4.8, 8, 14.5 GHz 22, 37 GHz + archival + archival + archival data data data

Average activity cycle duration

-- Analysed light curves and VLBI structure changes for 21 sources -- 15 quasars, 4 blazars and 1 radio galaxy -- Activity cycles are

0059+581, 0133+476, 0202+149, 0316+413 (3C 84), 0458-020, 0528+134, 0735+178, 0923+392 (4C 39.25), 0945+408, 1308+326, 1510-089, 1641+399 (3C 345), 1730-130, 1739+522, 1741-038, 1803+784, 2145+067, 2223-052 (3C 446), 2230+114 (CTA 102), 2251+158

Kinematics of the blazar S5 1803+784

Kinematics of the blazar S5 1803+784

Seven jet components which remain stationary over 25 years. Only one flare, last broad outburst C shows large opacity and time delays

Activity cycle of S5 1803+784 is more than 25 years

How an activity cycle evolve with time

Time delays, spectra, amplitude and width of the flares changing gradually and accompanied with the jet component ejections after the maximum for 2145+067, 3C 446 (2223-052), 3C 454.3, 0133+476
→ these outburst is an evolution of one perturbation in the base of

AGN with periodical light curves

 For four sources we found that activity cycles 3 coincides with periodicity in the total flux-density variability and VLBI structure changes •→ Something causes periodical perturbations of the 36 ase of the jet. 30 • Binary black holes? 25 Accretion discrinstabilities? 20 Flux, 15 8 GHz 30 14.5 GH 10 20 37 GHz 22 GHz 22 GHz 5 10 14.5 GHz 37 GHz 4.8 GHz 0 1970 1965 1970 1975 1980 1985 1990 1995 2000 2005 Time, years Time scale 12.4 years

Summary

Kudryavtseva et al. 2007, Kudryavtseva & Pyatunina 2006, Britzen,
Kudryavtseva, Witzel et al. 2008, Kudryavtseva et al. 2008 PhDMain results:thesis, Pyatunina, Kudryavtseva, Gabuzda et al. 2006, 2007

• Applied a new method of calculating activity cycles from total flux-density analysis and VLBI structure changes

•Calculated activity cycles of 21 blazars and quasars

- Activity cycles are long are in average 4-8 years in source frame
- Can last for more than 25 years with one jet component ejection per 25 years

• During the cycle the frequency-dependent time lags, opacity, amplitudes of the flares and widths are changing gradually → jet component(s) are ejected during the maximum opacity which can be explained with the shock-in-jet model

Fulfilled projectsResearch experience

Outline

Outburst/component ejection relation. Activity cycles in blazars and quasars Structure evolution of the blazar S5 1803+784: observations vs. theory Helical trajectory in 0605-085 AGN with periodical light curves Rapid variability of AGN AGN with restarted activity

Fulfilled projects

1. Outburst/component ejection relation. Activity cycles in blazars and quasars

