Studying the continuum spectrum of the parsec scale jets by multi-frequency VLBI measurements

Tuomas Savolainen
Max-Planck-Institut für Radioastronomie; Alexander von Humboldt fellow

in collaboration with
K. Wiik1, E. Valtaoja1 & M. Tornikoski2

1Tuorla Observatory, University of Turku
2Metsähovi Radio Observatory, Helsinki University of Technology

EVN Symposium 2008, Bologna
Why is it important to study the 2-D spectrum of pc scale jets?

In order...

- to study the jet physics: measuring the synchrotron self-absorption turnover and the component size gives you a handle on the important physical parameters: B and N_0. And there is no need to assume equipartition!

- to predict how much SSC X-rays one can expect from the source and from which part of the jet these come from.

- to test shock models by measuring the spectral evolution of the moving components.

- to study the possible absorption by circumnuclear gas.
Why is it important to study the 2-D spectrum of pc scale jets?

In order...

- to study the jet physics: measuring the synchrotron self-absorption turnover and the component size gives you a handle on the important physical parameters: B and N_0. And there is no need to assume equipartition!
- to predict how much SSC X-rays one can expect from the source and from which part of the jet these come from.
- to test shock models by measuring the spectral evolution of the moving components.
- to study the possible absorption by circumnuclear gas.
Why is it important to study the 2-D spectrum of pc scale jets?

In order...

- to study the jet physics: measuring the synhrotron self-absorption turnover and the component size gives you a handle on the important physical parameters: B and N_0. And there is no need to assume equipartition!
- to predict how much SSC X-rays one can expect from the source and from which part of the jet these come from.
- to test shock models by measuring the spectral evolution of the moving components.
- to study the possible absorption by circumnuclear gas.
Why is it important to study the 2-D spectrum of pc scale jets?

In order...

- to study the jet physics: measuring the synchrotron self-absorption turnover and the component size gives you a handle on the important physical parameters: B and N_0. And there is no need to assume equipartition!

- to predict how much SSC X-rays one can expect from the source and from which part of the jet these come from.

- to test shock models by measuring the spectral evolution of the moving components.

- to study the possible absorption by circumnuclear gas.
Why is it important to study the 2-D spectrum of pc scale jets?

In order...

- to study the jet physics: measuring the synchrotron self-absorption turnover and the component size gives you a handle on the important physical parameters: B and N_0. And there is no need to assume equipartition!

- to predict how much SSC X-rays one can expect from the source and from which part of the jet these come from.

- to test shock models by measuring the spectral evolution of the moving components.

- to study the possible absorption by circumnuclear gas.
Extraction of the Spectra from Multi-\(\lambda\) VLBI Data

Problems:

- Target sources are typically variable \(\Rightarrow\) need (quasi)simultaneous multi-\(\lambda\) measurements. OK with VLBA.
- Accuracy of flux density calibration. OK at \(\nu \leq 22\) GHz, need checks at higher freqs.
- Image alignment. After phase self-cal, there is no absolute position information in the data. Can be dealt with.
- Uneven \((u, v)\) coverage. Our new method alleviates this problem.
Problems:

- Target sources are typically variable \Rightarrow need (quasi)simultaneous multi-λ measurements. OK with VLBA
- Accuracy of flux density calibration. OK at $\nu \leq 22$ GHz, need checks at higher freqs.
- Image alignment. After phase self-cal, there is no absolute position information in the data. Can be dealt with.
- Uneven (u, v) coverage. Our new method alleviates this problem.
Problems:

- Target sources are typically variable \Rightarrow need (quasi)simultaneous multi-λ measurements. OK with VLBA
- Accuracy of flux density calibration. OK at $\nu \leq 22 \text{ GHz}$, need checks at higher freqs.
- Image alignment. After phase self-cal, there is no absolute position information in the data. Can be dealt with.
- Uneven (u, v) coverage. Our new method alleviates this problem.
Problems:

- Target sources are typically variable \Rightarrow need (quasi)simultaneous multi-λ measurements. OK with VLBA
- Accuracy of flux density calibration. OK at $\nu \leq 22$ GHz, need checks at higher freqs.
- Image alignment. After phase self-cal, there is no absolute position information in the data. Can be dealt with.
- Uneven (u, v) coverage. Our new method alleviates this problem.
Problems:

- Target sources are typically variable \Rightarrow need (quasi)simultaneous multi-λ measurements. OK with VLBA.
- Accuracy of flux density calibration. OK at $\nu \leq 22$ GHz, need checks at higher freqs.
- Image alignment. After phase self-cal, there is no absolute position information in the data. Can be dealt with.
- Uneven (u, v) coverage. Our new method alleviates this problem.
Problems: Uneven (u, v) coverage

- VLBI networks cannot be scaled $\Rightarrow (u, v)$ plane coverage differs significantly at different observing frequencies
- Classic solution: match the (u, v) coverages either by throwing away long spacings at high frequencies or tapering the data to common resolution \Rightarrow throw away a lot of data and lose angular resolution
- Broad frequency coverage, which is needed to observe the spectral turnover, exacerbates the problem!
Extraction of the Spectra from Multi-λ VLBI Data
Model-fitting Based Method

Solution: brightness distribution template

- Use *a priori* knowledge of the source structure from the high(est) frequency map ⇒ fit the lower frequency data with a brightness distribution template.
- Angular resolution now depends on the SNR of the visibility data ⇒ if the data have high SNR, it is possible to derive sizes and flux densities of even those emission features that have mutual separations less than the Rayleigh limit.
- Significantly relieves the problem with uneven \((u, v)\) coverage.
Extraction of the Spectra from Multi-\(\lambda\) VLBI Data

How Is It Done in Practice?

1. Form a model of the source brightness distribution at the frequency giving the best angular resolution and good SNR (a small number of Gaussians)

2. Transfer the model to lower frequency, keep relative positions of the components fixed (*a priori* knowledge)

3. Align the model with the data by using optically thin jet features (fine-tune the alignment, if necessary)

4. Fit the model letting \(S_\nu\) and \(\Theta\) to vary

5. Add new components, if new emission regions have emerged. Merge components that have mutual separation < 1/5 of the beam size.

Repeat 2 – 5 for all the frequencies.
Extraction of the Spectra from Multi-\(\lambda\) VLBI Data

How Is It Done in Practice?

1. Assume smooth variations in component size over frequency and estimate the size-frequency relation (*a priori* knowledge)

2. Fix the size and fit the model with \(S_\nu\) as the only free parameter

\(\Rightarrow\) Final spectra
Multifrequency VLBA Observations of 3C 273

- 5-epoch multifrequency VLBA monitoring carried out concurrently with the INTEGRAL campaign in 2003 (Courvoisier et al 2003, A&A, 411, 343)
- Simultaneous observations at 5, 8.4, 15, 22, 43, and 86 GHz, including polarisation at every frequency
Examples of the Measured Spectra
Spectral Decomposition of the Core Region

Elongated, rather flat-spectrum core can be decomposed into a series of self-absorbed synctrotron components.
Consistent evolution gives confidence on the method!

In some components synchotron losses dominate? In others adiabatic?
Consistent evolution gives confidence on the method!

In some components synchotron losses dominate? In others adiabatic?
The Case of 3C 273

Summary

Spectral Evolution

- Consistent evolution gives confidence on the method!
- In some components synchotron losses dominate? In others adiabatic?
Mapping the Jet Spectrum on Parsec Scale
The Case of 3C 273

Summary

Spectral Evolution

- Consistent evolution gives confidence on the method!
- In some components synchotron losses dominate? In others adiabatic?

Savolainen et al. 2-D spectra of the pc scale jets
Consistent evolution gives confidence on the method!

In some components synchotron losses dominate? In others adiabatic?
The synchrotron peak frequency decreases as function of distance from the core: $\nu_m \propto r^{-0.7 \pm 0.1}$

Confirms the composite nature of the flat radio spectrum
Physical Parameters of the Plasma

- We have measured S_m, ν_m, α and Θ; Doppler factor δ is available from VLBI monitoring (Savolainen et al. 2006, A&A, 446, 71)

- Assuming standard synchrotron theory (e.g. Marscher 1987, in Superluminal Radio Sources):

$$B = 10^{-5} b(\alpha) \Theta(\nu_m)^4 \nu_m^5 S_m^{-2} \frac{\delta}{1+z} \quad [\text{G}]$$

$$N_0 = n(\alpha) D_{\text{Gpc}}^{-1} \Theta(\nu_m)^{-(7-4\alpha)} \nu_m^{-(5-4\alpha)} S_m^{3-2\alpha}$$

$$\times (1 + z)^{2(3-\alpha)} \delta^{-2(2-\alpha)} \quad [\text{erg}^{-2\alpha} \text{ cm}^{-3}]$$

$$U_{\text{re}} \approx f(\alpha, \nu_2/\nu_1) D_{\text{Gpc}}^{-1} \Theta(\nu_m)^{-9} \nu_m^{-7} S_m^{4} (1 + z)^{7} \delta^{-5} \quad [\text{erg cm}^{-3}]$$

- No need to assume equipartition!

- Highly non-linear equations:
 - Need accurate input parameters
 - Monte Carlo methods needed in estimating uncertainties
Summary

- In the core, \(B \sim 1 \text{ G} \)
- Excluding B2, \(B \propto r^{-1} \)
- Significant \(B \) gradient across the jet at 1.5 mas from the core: Northern side \(\sim 1 \text{ mG} \) while Southern side \(\sim 50 \text{ mG} \)

Magnetic Field Density

\[
\log(B) \text{ vs. } \log(r)
\]

- **February 28, 2003**
- **May 11, 2003**

Graph Details

- **Axes:**
 - \(B \) [G]
 - \(r \) [mas]

- **Slopes:**
 - \(b = -2 \)
 - \(b = -1 \)
In the core, $B \sim 1 \text{ G}$

Excluding B_2, $B \propto r^{-1}$

Significant B gradient across the jet at 1.5 mas from the core: Northern side $\sim 1 \text{ mG}$ while Southern side $\sim 50 \text{ mG}$
Gradients in B and Γ across the Jet

- 43 GHz VLBA monitoring: there is a velocity gradient across the jet between 1-2 mas (Savolainen et al. 2006, A&A, 446, 71):
 - Northern component B2 has $\Gamma \approx 7$
 - Southern components B3 and B4 have $\Gamma \approx 17$
- Jorstad et al. (2005, AJ, 130, 1418) report a similar velocity gradient for different components and different time; according to them knots on the northern side have $\Gamma \approx 8$ and knots on the southern side have $\Gamma \approx 14$
Coincident gradients in B and Γ across the jet: Fast southern components with $\Gamma \sim 17$ have magnetic field density of ~ 50 mG while the slow northern component B2 has $\Gamma \sim 7$ and $B \sim 1$ mG; spine-sheath structure?
Finally: A word of Caution

Limitations of the spectral extraction method

- The results are sensitive to the image alignment. Needs to be accurate!
- There is a limit to how far one can extrapolate in spatial frequencies: it depends on the SNR of the data and on the properties of the model.
- It is implicitly assumed that there are no spectral index gradients over the individual components i.e. their brightness centroids are co-spatial at different frequencies.
Summary

- Multifrequency VLBA observations can yield high-quality 2-D spectra of the jets in parsec scales.
- Measured spectral evolution in 3C 273 is very consistent. Gives confidence on the method.
- Magnetic field density in the jet of 3C 273 was mapped within first 2 mas; in the core $B \sim 1 \text{ G}$.
- There are coincident magnetic field density and bulk velocity gradients across the jet at $\sim 1.5 \text{ mas}$ from the core: fast southern components have stronger magnetic field than the slow northern component. Do magnetic jet launching models predict this?
Extra Slides
Simultaneous Data at 6 Frequencies

Observed on February 28, 2003

Savoilainen et al.

2-D spectra of the pc scale jets
Summary

Energy Density of the Relativistic Electrons

\[\langle U_{re} \rangle \sim 10^{-4} \text{ erg cm}^{-3} \]

Out of equipartition: Core (B dom.), B2 (particle dom.)

Limit for \(\gamma_{\text{min}} \): if the source is required to be rest-mass dominated beyond the core, \(\gamma_{\text{min}} \) must be below 10