

The Decaparsec Scale Radio Structures of BL Lac Objects

Redmond Hallahan – University Sollege Cork, Ireland

Outline

Introduction

- > Objects
- > Observations
 - Two epoch, multi-frequency
 - Decaparsec scales
 - Spine sheath Polarization
 - Farady rotation
- Results
 - Polarization structure
 - Rotation measure
 - Fractional Polarization

BL Lacs

Properties

- > Jet appears close to our line of sight
- Beaming with high
 Doppler factors
- > Variable
- Faint optical line emission
- > Synchrotron emission
 - Linear polarization

The Sample

 The sample of 34 northern BL Lac objects selected from the 1JY Catalogue by Kühr and Schmidt (1990).

• Flux > 1Jy at 5 GHz.

Lack of line emission in the optical band.

Sample includes BL-Lac and many sources are part of MOJAVE.

Observations

>16-17 January 2004 >V.L.B.A. Data >4 wavelengths between 18 and 22 ▶13 December 1999 ►V.L.B.A. Data ▶ 18 and 13 cm ➤ Good UV coverage > Data calibrated and

General Trends

Morphology

- > Jet extends from tens to hundreds of mas
- > Jet emission out to 0.7 kpc
- Rolarization Structure
 - > Interested primarily in the jet polarization
 - > Core lacks resolution
- Rotation Measure distribution
 - > Electron density and B field along line of sight
- Evidence for helical magnetic fields

Large scale structure

○ 1538+149

 > Extended
 > Signs of Jet
 instability

Large scale structure

1823+568
 > Extended
 > Polarized
 knot in
 Jet

Evidence for Spine-Sheath structure

What is it?

Observed tendency for E Optical Depth E relative to B Implications Helical B Field

Left: Observed polarization

Bolow: Magnetic Field

Polarisation structure

o 1803+784

Polarisation structure

Polarisation structure 160 0 ○ 0716 + 714 140 > 2004 18cm 120 100 0 80 MIIIIARC SEC \bigcirc 60 40

-20

O

MilliARC SEC

20

Ο

Multi-Epoch Observations 0735+178 13 cm, 1999

Faraday Rotation

- Rotation of the plane of linear polarization.
 RCP and LCP have different velocity in the plasma. χ_{obs} = χ₀ + RMλ²
- Lambda squared dependence
 Dependant on magnetic field and free electron population.

Faraday Rotation effects

- Due to ISM in our own galaxy
- Pushkarev (2001)
- VLA observations (18 22 cm)
- Lambda squared dependence

An RM of just 20 can cause rotations of up to 50 °

Rotation Measure Gradients

 Gradients due to the changing line of sight B field

RM Intrinsic to the source

0954+658 > Observed at other VLBA frequencies too.

Above: 2004, 18 - 22cm RM Left: Slice as shown by arrow RM from -9 to +35 Rad / m²

RM Intrinsic to the source

1803+784

- Also observed at other VLBA frequencies.
- Plenty of structure
- Possible gradients
- Needs further investigation and error analysis

<u>RM</u> Intrinsic to the source

• BI Lac

- Weak gradient across inner jet.
- Modest faraday
 rotation from ISM
 of our galaxy, but
 weak RM at the
 source

RM Intrinsic to the source 0048-097 0716+714 2155-152

 Both 0716+714 and 2155-152 gradients are in same direction as higher frequency observations of Mahmud

Fractional Polarisation Maps

0954+658

• Further evidence for helical fields, cf Lyutikov (2005).

Project Status

Imaging just completed for all data.
 Rotation measure maps needed for all sources from 2004 data.
 Rotation measure maps between 13 and 18cm from 1999 possible
 Categorise sources due to morphologies or polarisation structure.

<u>Su</u>mmary

Operations
Operations

- Rich structure
- Spine sheath polarisation structures
- RM gradients
- Ordered belarization structures
 - Ordered polarization structures

Acknowledgments

Denise Gabuzda – UCC, Supervisor Péter Veres - Eotvos University, Budapest, Hungary

This work is supported by a Basic Research Grant from Science Foundation Ireland. The VLBA is operated by the National Radio Astronomy Observatory, which is a facility of the National Science Foundation operated under cooperative agreement by Associated Universities, Inc.

Decaparsec Scale polaRedmond Hallahan – University College Cork, Ireland 34 BL-Lac Objects