Maser studies in evolved stars SiO in AGB CSEs

Francisco Colomer Observatorio Astronómico Nacional Spain

Please visit...

- Poster #2 by **Amini et al.** on OH masers in the PN W43A.
- Poster #9 by **Fujisawa et al.** on a water maser outflow in NML Cyg, studied with the Japan VLBI Network.
- Poster #11 by **Honma et al.** on the galaxy's rotation by water masers using VERA.
- Poster #15 by Lindquist et al. on OH masers in OH/IR stars as studied by MERLIN.
- Poster #18 by Matsumoto et al. on 9 epochs of SiO v=1 and v=2 J=1-0 masers in IK Tau observed with VERA.
- Poster #21 by Rioja et al. on SiO masers in R LMi studied by VERA.
- Next talk by Anita Richards
- Talk by **Yoon Kyung Choi** to measure distance to VY CMa with VERA using water masers (on Friday).
- Talk by **Hiroshi Imai** on OH masers on water fountain sources
- Talk by **Sandra Etoka** on PPN OH231.8+4.2

Schematic view of an AGB star

Basics of maser emission

$$\frac{dI_{\nu}}{ds} = -I_{\nu}k_{\nu} + j_{\nu} \qquad \qquad j_{\nu} = k_{\nu}B_{\nu}(T) = k_{\nu}\frac{2h\nu^3}{c^2}\frac{1}{e^{h\nu/kT} - 1}$$

$$I_{\nu}(x) = I_{\nu}(0) e^{-k_{\nu} x} + B_{\nu}(T) (1 - e^{-k_{\nu} x})$$

$$j_{\nu} = \phi(\nu) \frac{h\nu}{4\pi} g_u A_{ul} x_u \qquad k_{\nu} = \phi(\nu) \frac{c^2}{8\pi\nu^2} g_u A_{ul} (x_l - x_u)$$

$$T_b(\nu) = T_c \, e^{-\tau_{\nu}} \qquad \qquad \Delta \nu \approx \frac{\Delta \nu_{\phi}}{\sqrt{|\tau_{\nu_o}|}}$$

SiO masers

5

Water masers

Bains et al. (2003) MNRAS 342, 8

Vlemmings et al. 2005, A&A 434, 1029) ⁶

OH masers

Booth et al. (1981) Nature 290, 382

Norris et al. (1983) MNRAS 208, 435

7

The instruments

AGB stars: IRC+10011

Soria-Ruiz et al. (2004) A&A 426, 131 ⁹

IRC+10011

Soria-Ruiz et al. (2004) ¹⁰

Soria-Ruiz et al. (2004) ¹¹

Soria-Ruiz et al. (2004) ¹²

IRC+10011

- Ring-like structure
- Clumpy distribution
- v=2 and v=1 J=1-0 are similar, with v=2 smaller
- v=1 J=2-1 is quite larger

²⁹SiO v = 0 J = 1-0 ²⁸SiO v = 1 J = 2-1

²⁸SiO v = 1 J = 1 - 0 ²⁸SiO v = 2 J = 1 - 0

Soria-Ruiz et al. (2004) ¹³

Other AGB stars

AGB star	J = 1–0 (43 GHz)		J = 2–1 (86 GHz)	
	v=1	v=2	v=1	v=2
IRC +10011	X	X	X	non det
	X	X	X	
R Leo	X	X	X	non det
TX Cam	X	X	_	non det
	X	X	X	X
chi Cyg	X	X	X	X

Models of SiO maser emission

Need to describe:

- Spatial distribution
- Kinematics
- Region / spot sizes
- Clumpiness
- Time variability
- Polarization

Spatial distribution

- Ring structure:
 - Explained by tangential amplification (eg. Bujarrabal & Nguyen-Q-Rieu 1981)
- Time variability:
 - Correlation with IR pumping from the central star (eg. Pardo et al. 2004)
- Clumpiness:
 - Humphreys et al. (1996) MNRAS 282, 1359
 - Doel et al. (1995) A&A 302, 797

Time variability

Pardo et al. (2004) A&A 424, 145

Tangential amplification = Rings

Bujarrabal (1981) PhD Thesis See also Bujarrabal & Nguyen-Q-Rieu (1981) A&A 102, 65

Multitransition studies

AGB star	J = 1–0 (43 GHz)		J = 2–1 (86 GHz)	
	v=1	v=2	v=1	v=2
IRC +10011	X	X	X	non det
	X	X	X	
R Leo	X	X	X	non det
TX Cam	X	X		non det
	X	X	X	X
chi Cyg	X	X	X	X

²⁹SiO v = 0 J = 1-0 ²⁸SiO v = 1 J = 2-1²⁸SiO v = 1 J = 1-0 ²⁸SiO v = 2 J = 1-0

The case of SiO v=2 J=2-1

First proposed by Olofsson et al. (1981, 1985)

Line overlap effects

The alignment problem

It is essential to properly align the images of different maser transitions. Methods:

- 1. Calculate centroid of emission; align clumps of same velocity.
- 2. Follow the interferometric phase from one maser line to the other.
- 3. Frequency-phase transfer.
- 4. Absolute astrometry by phase referencing to quasars.

And it is important to relate these positions to the actual position of the central star!

1. Alignment by centroid

2. Alignment by phase tracking

TX Cam

Yi et al. (2005) A&A 432, 531

3. Frequency-phase transfer

Rioja et al. (2008) PASJ see talk by Taehyun Jung & poster by Rioja et al. (#21)

4. Absolute astrometry: VERA

R LMi

Rioja et al. (2008) PASJ see also Posters #18, # 21

RA offset (mas; J2000)

Imaging the photosphere!

R_∗ = 5.6 AU R_{SiO} = 8 AU

Reid & Menten (2007) ApJ 671, 2068 28

Kinematics

TX Cam

Yi et al. (2005)

Gonidakis, Diamond & Kemball (2008) 29

Polarization

Cotton et al. (2006) A&A 456, 339; Cotton et al. (2004) A&A 414, 275 30

SiO masers at GMVA

Colomer et al. (2008) PASJ

VSOP-2

• It will operate at the 22 and 43 GHz bands (H_2O and SiO masers).

• VSOP-2 to ground baselines at 43 GHz will have the same spatial resolution as the GMVA at 86 GHz.

VX Sgr at mas resolution

 OH 1612 MHz masers at 800-2000 au (65-170 R₂)

 H₂O masers at 95-325 au (8-27 R_→)

 SiO masers within 3 R_{*}

 OH mainlines overlap H₂O and 1612 MHz

Richards et al. (2007) IAU242, 261

VERA parallaxes

Nakagawa et al. (2008) PASJ 34

VY CMa

PPNs: OH231.8+0.4

Desmurs et al. (2007) A&A 468, 189 see also talk by Sandra Etoka (on Friday)

Milli Arcsec

Conclusions

- High resolution maps of maser emission provide detailed information on processes occurring in circumstellar envelopes of AGB stars.
- A particularly detailed picture of the inner layers is provided by SiO masers.
- Multi-transition simultaneous observations of these masers are needed to better constrain the models.
- Maps of different maser transitions must be spatially aligned.
- Models are still unable to explain all their characteristics together (distribution, variability, etc). Much more work is needed!
- New generation instruments (VERA, VSOP-2), new observational techniques (frequency-phase transfer), and models will help solving the puzzle.

Thank you!

The missing flux problem

