Jodrell Bank Observatory Wide-band Imaging with e-MERLIN

Danielle Fenech (UCL/Jodrell Bank) Ian Stewart (ALBUS/Manchester) Simon Garrington (e-MERLIN/VLBI)

Motivation

The University of Manchester

- e-MERLIN
- Background
- Simulations
- M82 data
- Parseltongue implementation
- e-MERLIN data processing

Motivation

- Golden Age of Radio Astronomy: new technology (DSP, TB disks, optical fibres)
 → much greater bandwidth → increased sensitivity (continuum)
- Typically few% \rightarrow 50% bandwidth
- Fills aperture plane for sparse arrays like MERLIN, EVN
 - Reduce sidelobes to 10^{-3} to 10^{-4}
- Provides free spectra & RMs
- But introduces new problems for imaging.
- Solutions (and some implementations) exist, but rarely used...
 - Artifacts at $\Delta \alpha/200$
- Will be required for e-MERLIN, EVLA (wide bandwidths, high dynamic range)

e-MERLIN

- Major upgrade to MERLIN
 - 7 antennas; 220km max baseline
 - 50 mas resolution at 5 GHz
- 4 GHz bandwidth (2x2GHz or 2+2 GHz)
- New optical fibre network installed
- New/upgraded receivers
 - 1.3-1.8 GHz, 4-8 GHz, 21-24 GHz
- New IF, samplers,...
- New correlator (DRAO)
 - Starting to commission now

MANCHESTER

e-MERLIN Capabilities

- uJy sensitivity in 12 hrs
- 10 150 mas resolution
- L (1.3-1.8 GHz), C (4-8 GHz) K (21-24 GHz) Tsys 25-40K Rapid change (1 min) between bands
- 16 sub-bands
 - 0.25 MHz channels at all Stokes, full bandwidth (128 MHz)
 - <kHz resolution; mix bandwidths</p>
- Combination with EVN
 - EXPReS

Open Time + 'Legacy Programme'

- Stellar magnetic fields
- Massive star formation
- Stellar mass loss
- Pulsar astrometry
- Planet-forming disks
- YSO jets
- XRBs; transients
- Jet physics
- Galaxy substructure, environments
- Starformation & AGN in nearby galaxies
- Galaxy evolution

Proposals being evaluated now

3x oversubscribed; >300 scientists Programme put to Steering Committee before end of year

Projects should remain open

Wide-band imaging Multi-frequency Synthesis

For no spectral variation Dirty map: $I'(x,y) = I(x,y) * B_0(x,y)$ For i different frequencies & spectral variation (α) across map Dirty map: $I' = I * B_0 + I \alpha * B_1 + ...$ $B_0 \Leftrightarrow S(u,v)$ $B_1 \Leftrightarrow \sum (\Delta v_i / v_0) S_i(u,v)$ Ш

MANCHES

Wide-band example

Where both point sources have identical spectra:

Spectral indices both +10.0 (!!!)

Wide-band example

More realistic: different spectra:

This will not clean away.

E

'Spectral beams'

Sault-Wieringa algorithm

• Form dirty image I(x, y) and a beam $B_k(x, y)$ for each Taylor order k

- Perform correlations for k, l = 1 to N:
 - $A_{kl} = B_k * B_l$
 - $R_k = I * B_k$

Sault R J & Wieringa M H: A&A Suppl. Ser. 108, 585 (1994)

S-W implementation

- Calculate matrix elements $M_{kl} = A_{kl}(0,0)$ and invert M
- For each clean component (ie 'point source' j):
- Evaluate 'equation 22':

 $\circ E22(x,y) = \sum_{k} \sum_{l} M^{1}_{kl} R_{k} R_{l}$

- Find (x_{max}, y_{max}) , location of maximum in E22
- Coeffs a_{j,k,l} given by matrix expression (equ 14)
 a_j = M⁻¹R(x_{max}, y_{max})
- Subtract scaled and shifted A_{kl} from the beamcorrelated residuals R_k:

 $\circ R_k = R_k - \lambda \Sigma_l a_{j,k,l} A_{kl} (x - x_{\max}, y - y_{\max})$

Implemented to first order in Miriad (ATNF)

Tested simulation

f(GHz)

MANCHE

IER

S-W clean to various orders

(All 1000 cycles with gain = 0.1) Oth order (equivalent to Högbom clean)

S-W clean to various orders

1st order

S-W clean to various orders

2nd order

S-W clean to various orders

3rd order

Testing with real data

- Eleven separate observations of nearby starburst M82.
- Range from 4.5 6.7 GHz, each 16 MHz bandwidth.
- Provides ideal test for the algorithm more extended emission with changes in spectral index.
- Also show effects of incomplete aperture.

Testing with real data

Testing with real data

Single band at 6.7 GHz Combination bands between 4.5 and 6.7 GHz

MANCHESTER

Resulting beams

Testing with real data

- Each observation calibrated individually and then combined.
- AIPS does not know how to do this.
- Use a combination of tasks including DBCON and written/amended tasks to accomplish producing the images and beams required for testing.
- May be used (initially) to split and recombine e-MERLIN data to carry out calibration on sections of the data!

Parseltongue

Parseltongue - SW

- Added a 'major cycle' to the code so will be able to incorporate wide-field faceted imaging.
- Many generic python tools written for image analysis, manipulation
 - Faster, but not as fast as coding at task level
- Need to tidy-up outputs into user-friendly images/information

e-MERLIN Data Processing

- Data presented as up to 16 sub-bands
 - Similar to largest present-day VLBI data
- Automated flagging
- A priori calibration using Tsys data
- Amplitude calibration source models <u>necessary!</u>
- Bandpass calibration per sub-band
- Phase calibration (phase cal. source/FRING)
 - Per sub-band
- Initial sub-band imaging
- Removal of brighter confusing sources
 - Peeling, per sub-band
- Initial full-band image
 - Map & stack
- Search for fainter confusing sources
 - Subtraction
- Multi-frequency imaging