The future of the European VLBI Network

Huib Jan van Langevelde Joint Institute for VLBI in Europe, Dwingeloo NL

This talk

- View on the future of EVN with personal bias
- EVN CBD has started a road-mapping exercise
 - Following the issue of the EVN2015 science case
 - Various interesting concepts being discussed
 - And strategic issues
- This talk is very much open to discussion
 - "tackle" me after my talk
 - Or one of the following:
 - · Walter Alef, TOG, Bonn
 - Paco Colomer, Yebes
 - · Luigina Feretti, Bologna
 - Simon Garrington, Manchester
 - Huib van Langevelde, JIVE
 - Andre Lobanov, Bonn
 - Rene Vermeulen, ASTRON

Outline

Timeline

- 2006 2010 EXPReS introducing e-VLBI
 - Growing into 4Gbps
 - Many MERLIN station
 - R+D for w correla
- 2010 2
 - Make beyout
 - Constr
- · >2015
 - Wid VLBI
 - Introduce small N small VLBI stations

Topics

- Technical
 - Data acquistion
 - Data tran

- Operational methods
- User access
- Organizational
 - Collaborations
 - Fund raising
 - Governance

EVN2015 roadmap

Science case has been developed

http://www.evlbi.org/publications/publications.html

Some highlights include:

- Nature of starburst/AGN in cosmological fields
- The fate of black holes/radio quiet AGN
- Jet physics close to the event horizon (VSOP2)
- Determining star burst activity, resolving SNR's
- The accretion physics in transient radio sources
- The detailed 3D kinematics of star formation
- The nature of the ISM in active galaxies
- Fundamental distances from astrometry
- Pulsar astrometry
- Monitoring spacecraft in the solar system

Complement to new facilities

- Science case will be complementary to other facilities
 - EVLA will reach new science with enhanced sensitivity
 - E-MERLIN will have fantastic bandwidth coverage
 - Will require VLBI to operate in same regime for follow-up
- LOFAR and E-LOFAR
 - Interesting input catalogues for VLBI follow-up
 - Cosmological sources at low frequency
 - Transients and variable sources
- Other SKA pathfinders
 - In particular follow up of pulsar surveys
- European Astronomy facilities outlined in ASTRONET effort
 - EVN recognized as addressing some of the major themes in astronomy
- There is a need for VLBI in SKA era

First point: it will be e-VLBI!

- When we started e-VLBI and the EXPReS project
 - First pilots in 2004
 - EXPReS funded in 2006 by the EC, finishes in 1 year
- Amongst our concerns:
 - Can we connect all telescopes on competitive timescale?
 - Will we be able to deliver interesting bandwidth?
 - Will e-VLBI be just as reliable?
 - Will it be applicable to Global VLBI?
 - Will it produce new science?
 - Will it be cost effective?
 - Are we loosing options by not recording the data?
- Looking at the progress with e-VLBI:

Remarkable progress

- 7 telescopes regularly on line, interesting for science
 - Sustained operations at 512Mb/s

Size of bubble set by number of telescopes participating, height by station sustained bitrate

Progress in Europe

- As robust as normal VLBI
 24 hr long up-time:
- Managed to get almost full sensitivity at 1024 Mbps
 - Selectively dropping data
- Connectivity to Effelsberg
 - Major importance for sensitivity
 - Included in science runs

EVN Reliability Index

2008: Africa and the Americas

. Network status as per 2008-05-02. Image created by Paul Boven

boven@jive.nl>. Satellite image: Blue Marble Next Generation, courtesy of Nasa Visible Earth (visible
earth nasa.gov)

Demo in 2008 at TERENA

- Arecibo, Puerto Rico
- TIGO Chile

Hartebeesth

Challenge: 5 c Internationa Astronomy 2

ASTRONOMY 2009

New e-VLBI science

24 June e-EVN

Scientific output:

- Operational facility from 2006
 - Available on scheduled dates throughout year
 - For normal proposal and short observations
 - And special class of triggered proposals
 - Increasing use for Target-of-opportunities
- Cultural change requiring quite some discussion in the EVN

Cost effective?

- Shipping still cheaper than bandwidth at commercial rates
 - International connectivity provided by Geant as part of project
 - Local providers quite supportive of the project
 - Continue to lobby for continuity

Buffered VLBI data

- Are we loosing options by correlating real time?
 - Considerable fraction EVN proposals have multiple passes
 - For different resolution on line channels
 - High resolution pass for spectra-polarimetry
 - To collect all baselines for 16+ stations
 - Just means the correlator is not up to user requirements
- Still, buffering data could be advantageous
 - To include telescopes that cannot connect
 - Real time results and full array results later
- Could be important step in guaranteed quality level for EVN observations

EXPReS follow-up

- e-VLBI wish-list for Network providers
 - Dynamically allocation of light-paths
 - To accommodate distributed correlation
 - And around the globe in some uniform manner
 - Must continue close collaboration with NREN
 - Buffering data at telescopes and correlator for robustness
- Make use of 10Gb/s infrastructure!
- Requiring upgrades on the VLBI side:
 - Implement new digital data-acquisition system
 - And expand the usable IF bandwidth
 - Decide on correlator architecture for next generation
- Synergy with E-LOFAR connectivity

Scientific motivation

- Rapid response for rapid variability
 - Fast response to requests
 - Immediate analysis of data, adapt observing parameters
 - Coordination with current and future observatories
 - GLAST, LOFAR
- Immediate feedback
 - More robust data
- Fewer consumables, logistics
 - Constantly available VLBI network
 - Monitoring: for example astrometry
 - Spacecraft tracking
- Growth path for more bandwidth
 - More sensitivity
- European SKA pathfinder

Data acquisition

- First DBBC systems being commissioned
 - Improves data quality
 - And provides path to larger bandwidth
 - EVN aiming for 4Gbps pilot
- Mk5B systems ready for use
 - Necessary to overcome outdated playback capability
 - Mk5C being adopted by VLBA
 - Global compatibility at 1 Gbps and beyond
- Use requires upgrade of telescope IF bandwidth
 - Limited at lower frequencies by available allocation

MERLIN telescopes in the EVN

- Recent EVN experiment had fringes from 5 UK dishes
 - In 1 pol and limited by MERLIN link bandwidth
- Supposedly much better in eMERLIN
 - Work on digital interface defined in EXPReS
- eMERLIN interfaces make you think again about chanellization
 - Could all be in correlator

Yebes, new 40m telescope

- Now available at S,X,K
- First ever telescope to have first fringes without recording

Relation with space

 Chinese telescopes in Chang'E project

 Similar to Huygens application

More spacecraft tracking

- LAPLACE and TANDEM (former names)
 - accepted by ESA for study for 2015-2025
 - Earlier projects may include Bepi-Colombo

LAPLACE: a mission to Jupiter and Europa:

- VLBI experiments with Europa landers/orbiter
- Radio astronomy experiments Jovian orbiter

TANDEM – Titan and Enceladus mission:

- VLBI experiments with Titan probes/balloons
- Radio astronomy exps Enceladus orbiter

And prepare for Space VLBI

 VSOP2 project and RadioAstron in preparation

Will push frequency coverage

RadioNet FP7

- RadioNet-FP7 has ~ 20 partners: all of the major radio astronomy facilities and the laboratories involved in technology development
- 10 M€ over 3 years
- In negotiation phase

RadioNet activities

- Trans National Access
 - MERLIN
 - EVN + Global VLBI
 - WSRT
 - LOFAR
 - Effelsberg
 - APEX
 - IRAM PdB
 - IRAM PV
 - SRT
- **Joint Research Activities**
 - ALBiUS
 - AMSTAR+
 - Mm receivers
 - APRICOT
 - Radio cameras
 - UniBoard

- Networking Activities
 - Management
 - Science workshop
 - Supports EVN symposium
 - Engineering Forum
 - Supports EVN TOG
 - Training Radio Astronomers
 - Schools and YERAC
 - Radio Frequency Management

EVN TNA program

- EC support for outside access to EVN facility
 - Directly benefits data quality through support team at JIVE
 - Support to visit the EVN (for help with data reduction)
 - Support for the EVN-PC
- Includes more EVN (new and affiliated telescopes)
 - And now also the VLBA for Globals
 - Important signal for the future of VLBA
 - Step to International VLBI Network (IVN)
 - Necessary for the SKA era

Please acknowledge funding support...

ALBUS to ALBIUS

ALBUS: Advanced Long Baseline User Software

Europe doing software development in FP6

- Efforts at JIVE, ASTRON, MPI, JBO
 - Enhance data product
 - calibration info
 - external atmospheric calibration
 - · archive selection methods
 - Large Data Volumes
 - research parallel processing
 - wide band data processing
 - wide field processing
 - ParselTongue: common interface
 - AIPS talking Python

FP7: ALBIUS

- Advanced Long Baseline Interoperable User Software
 - Bring trusted and proven algorithms to new environments
 - Allow new packages to run on data from RadioNet facilities
- Synergy with LOFAR, ALMA, EVLA
- New collaboration includes
 - All old partners
 - Cambridge, Oxford, Bordeaux
 - ESO and NRAO
- Workpackages include
 - Interoperability, python interfaces calibration model
 - Calibration: fringe fitting, image plane effects, parallel processing
 - Automated processing, data quality control, source fitting

Uniboard

- FPGA processing platform for digital processing
 - Put as many computing power as possible on 1 board
- Several applications:
 - Correlator
 - Pulsar machine
 - Digital backend
- Participants:
 - ASTRON
 - JIVE
 - INAF
 - Bordeaux
 - Orleans
 - Manchester
 - KVN (Korea)

Important R+D covered in these projects.

BUT....

- Not all EVN priorities can be addressed in externally funded projects
 - Calibration issues must be addressed by consortium
 - Amplitude calibration
 - Phase transfer schemes
 - Polarization purity
 - Frequency agility
 - Telescopes in strategic places
- Also operational issues that must be adressed
 - More time coverage than 3 fixed sessions
 - Guaranteed quality level, rapid re-observation
- Let's look at correlators...

EXPReS: FABRIC

- 10 Gbps connectivity coming up
 - Development of data acquisition system required
 - Interface to UK eMERLIN system
 - Connectivity to Onsala (SE) telescope

Radio telescope 1

And Metsahovi (FI)

Working on distributed software correlator

Prototype operational for quality control

- Grid enabled
- Looking for P-ops regime
- Not sure this is cost effective
 - Power and cooling bill

DiFX

- Software correlator developed at Swinburne
 - Operational for LBA
 - Adopted by VLBA
 - And being deployed at MPIfR Bonn
- Flexibility of software correlator is major asset
 - Replacing current correlator power on moderate size cluster

Pulsar scintillation (Brisken) requires extreme frequency resolution (244 Hz channels over 32 MHz bandwidth)

Next generation correlator

- Requirements set by EVN2015 science case
 - Multiple data streams of 10 100 Gbps
 - 32 stations, or at least more than 16
 - Multiple bit representation
 - High bandwidth at higher frequency
- Calls for a hundred fold more powerful correlator
 - Compares to EVLA correlator
 - Similar size as some (other) SKA pathfinders
- Seems to require FPGA based power
 - Software correlators can be intermediate solution.
 - Distributed correlation attractive in Europe
 - Seeking synergy with WSRT APERTIF system
 - Ground-work starts in RadioNet FP7: UniBoard

FPGA based correlation

- FPGA based boards with standard connections
 - And high speeds samplers, multiple 10Gb/s in
- Several modern FPGA/board
 - Few Tops per board
 - Could rebuild current EVN correlator on 8 boards
 - New correlator requires a few racks
- For total few 10s kW
 - compared to MW range for supercomputers
- High level development possible
 - with Simulink (CASPER Berkeley)

FPGA = Hybrid correlator

- FPGA based approach allows high level programming
 - Has some of the advantages of software correlator
 - Some level of scalability
- High accuracy, better signal to noise
 - RFI robust high bit representation
- Can have all the required flexibility
 - High spectral resolution, even for Space applications
 - Mixed bandwidth mode for spectral line phase ref
 - Make selection at the correlator?
 - Pulsar gating
 - Support for more than 1 beam per telescope

Longer term

- Time to compare to the SKA timeline
 - 2012 pathfinders complete
 - <2015 pathfinder science
 - >2015 phase 1 science

- LOFAR and SKA have simpler antennas
- But many more, more connectivity, more correlation

- e-VLBI is pioneering the development of signal transport for the SKA
- Can also be important in developing correlator solutions

Relation to SKA project

- Current EVN developments have a lot of synergy with SKA
 - E-VLBI is a recognized SKA pathfinder
 - For long-range connectivity, real-time radio-astronomy
 - Shares a lot of technology interests
 - Correlators and digital processing
 - Calibration algorithms and data processing
 - Telescopes...
 - Overlap in science expertise and training
 - Explored in MC Training network Path2SKA
- Also challenges
 - In continuity of funding
 - In training the right number of people
- Important for Europe to have its own pathfinder scale facilities
 - To maintain forefront facilities in the process
 - And train generation of radio-astronomers for the SKA

VLBI in the SKA era

- Unique science case for VLBI during SKA operations
 - Definitely during SKA phase I and II
 - Especially with Global baselines
 - And a focus on the higher frequencies
 - Limited overlap with SKA parameter space

- Requires a VLBI technology roadmap
 - And a strong international collaboration
- Will set ambitious goals
 - Not just new correlator, also new receptors

EVN2015 innovations

- Obvious: higher bandwidth at higher frequency
 - Demanded by EVN2015 science case
- Possible other innovations:
 - Many more telescopes that operate at higher frequencies
 - To improve image fidelity dramatically
 - Maybe station will be small clusters of antennas

Funding

- Competitive, Interesting times ahead
 - even more so with SKA on horizon
 - Radio-astronomy will have to present consistent story
 - Or even come to more formal, tighter collaboration model
- Long term case for VLBI look good
 - European based pathfinder for training and expertise
 - Outreach on a local basis

- Aim for the stars!
 - No room for conservatism wrt innovations!
- Good prospect of synergy with new facilities

Summary

e-VLBI is operational and works as reliable as recorded VLBI

- And can even be used for intercontinental VLBI
- Requiring new operational models and policies
- Short-term projects secure

Clear upgrade path for VLBI

- Requiring new data acquisition equipment
- and matching correlator
- In synergy with the SKA technology
- Should be done on a global scale

VLBI has a role in the SKA era

With global baselines and high frequencies