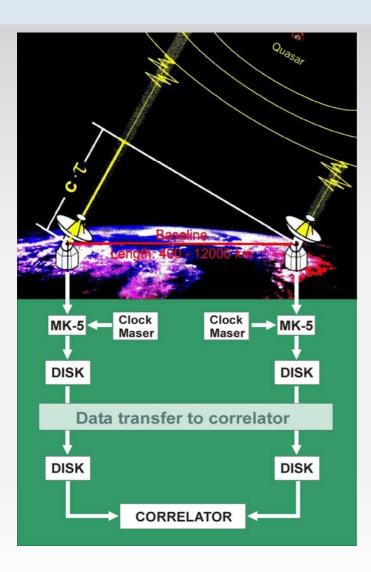
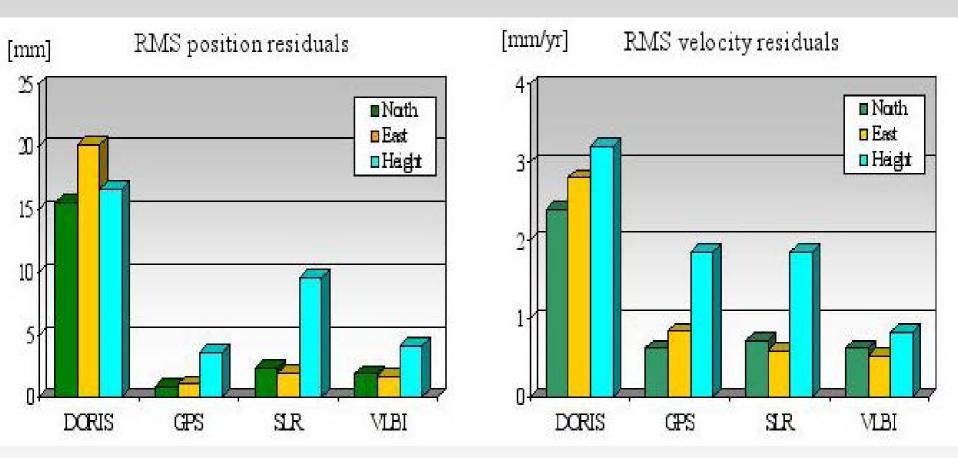


Current State and Future Developments of the IVS and Geodetic VLBI


H. Schuh, D. Behrend, A. Niell, B. Petrachenko, and R. Heinkelmann

Bologna, 26-Sept-2008

Geodetic VLBI


- Unique technique for
 - CRF
 - Precession/Nutation
 - DUT1 = UT1 UTC
- Primary technique for
 - EOP (complete set of parameters)
 - TRF (most precise technique for long baselines, scale)
- Observing S/X band

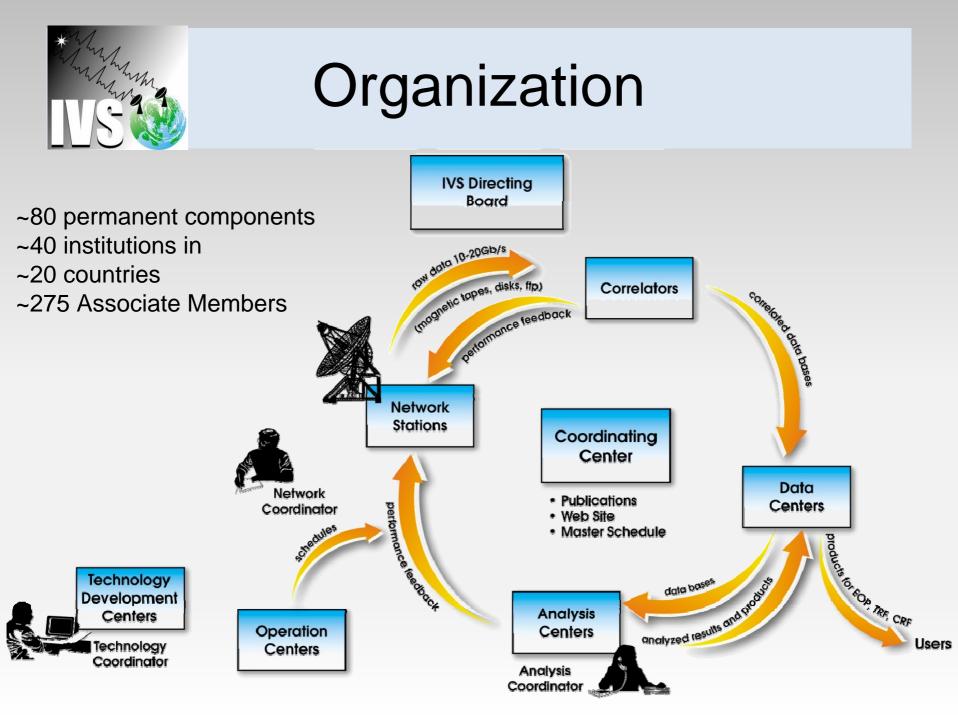
VLBI provides unique parameters

(M. Rothacher)

Parameter Type	VLBI	GNSS	DORIS	SLR	LLR	Altimetry
ICRF (Quasars)	X					
Nutation	X	(X)		(X)	Х	
Polar Motion	Х	Х	Х	Х	Х	
UT1	X					
Length of Day	(X)	Х	Х	Х	Х	
ITRF (Stations)	Х	Х	Х	Х	Х	(X)
Geocenter		Х	Х	Х		Х
Gravity Field		Х	Х	Х	(X)	Х
Orbits		Х	Х	Х	Х	Х
LEO Orbits		Х	Х	Х		Х
Ionosphere	Х	Х	Х			Х
Troposphere	Х	Х	Х			Х
Time Freq./Clocks	(X)	Х		(X)		

RMS of Space Geodetic Techniques

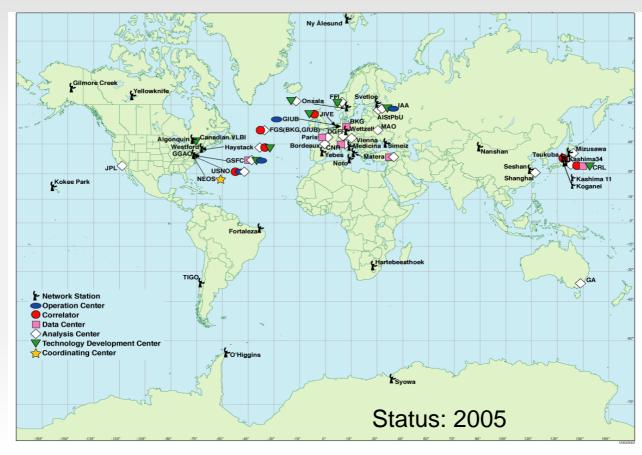
(From a global TRF solution derived by DGFI, Munich)


International VLBI Service for Geodesy and Astrometry

IVS is an international collaboration of organizations, which operate or support Very Long Baseline Interferometry (VLBI) components

- founded in 1.3.1999 as a service of
- IAG International Association of Geodesy
- IAU International Astronomical Union
- IERS International Earth Rotation and Reference Systems Service
- FAGS Federation of Astronomical and Geophysical Data Analysis Services

Objectives:


- Support geodetic, geophysical and astrometric operational **activities** and research
- Promote research and development in geodetic and astrometric VLBI technique
- Interact with the user community of VLBI products and integrate VLBI into a global Earth observing system

Components

- call (due 1-Sept-2008) for
 - IVS Combination Centers
 - IVS Analysis Centers (operational/associate)

network stations

27 most active sites

Antarctica (2) Australia Brazil Chile China (2) Germany Italy (3) Japan (5) Norway Russia (3) Spain South Africa Sweden Ukraine **USA (3)**

network stations O'Higgins - 9 m

27 most active sites

Antarctica (2) Australia Brazil Chile China (2) Germany Italy (3) Japan (5) Norway Russia (3) Spain South Africa Sweden Ukraine **USA** (3)

http://ivs.bkg.bund.de/vlbi/ohiggins/



network stations TIGO@ Concepción - 6m

27 most active sites

Antarctica (2) Australia Brazil Chile China (2) Germany Italy (3) Japan (5) Norway Russia (3) Spain South Africa Sweden Ukraine **USA** (3)

bkg

27 most active sites

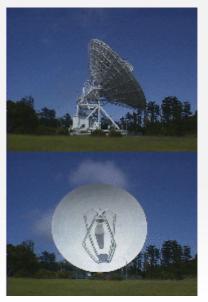
network stations Shanghai - 25 m

Antarctica (2) Australia Brazil Chile China (2) Germany Italy (3) Japan (5) Norway Russia (3) Spain South Africa Sweden Ukraine **USA** (3)

Shanghai Astronomical Observatory Chinese Academy of Sciences

27 most active sites

Antarctica (2) Australia Brazil Chile China (2) Germany Italy (3) Japan (5) Norway Russia (3) Spain South Africa Sweden Ukraine **USA** (3)

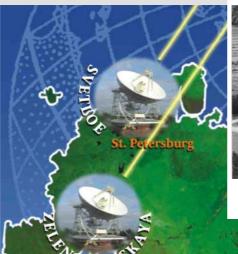

network stations Kashima - 34 m

National Institute of Information and Communications Technology

27 most active sites

Antarctica (2) Australia Brazil Chile China (2) Germany Italy (3) Japan (5) Norway Russia (3) Spain South Africa Sweden Ukraine **USA** (3)

network stations Ny Ålesund - 20 m



network stations

3 of 4 Russian Quasar network stations have joined the IVS

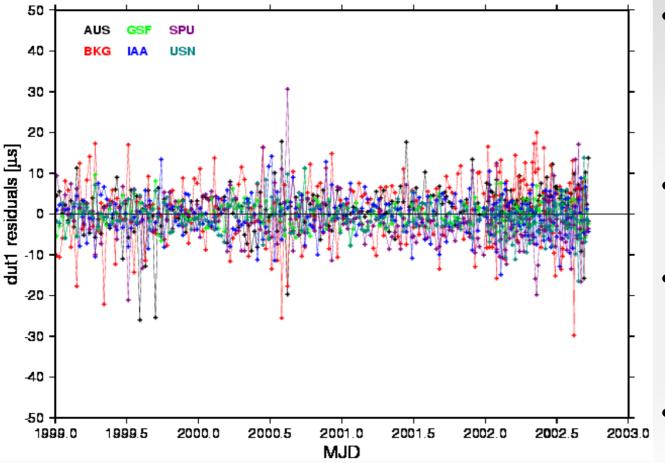
Antarctica (2) Australia Brazil Chile China (2) Germany Italy (3) Japan (5) Norway Russia (3) Spain South Africa Sweden Ukraine **USA** (3)

27 most active sites

Observatory Svetloe $\varphi = 60^{\circ}32', \lambda = 29^{\circ}47'$

Observatory Zelenchukskaya $\varphi = 43^{\circ}47', \lambda = 41^{\circ}34'$

Observatory Badary $\varphi = 51^{\circ}46', \lambda = 102^{\circ}14'$


Products

- EOP
- TRF + IVS Pilot Project Baseline Length
- CRF
- Tropospheric parameters
- Delivery time of products

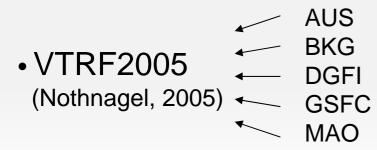
Products: Combined EOP

Analysis Coordinator: Axel Nothnagel, Univ. Bonn

- Complete set of EOP
 - $d\psi, d\epsilon$
 - $-x_p, y_p$
 - UT1-UTC
- Combined solution from 6 Analysis Centers
- 20-30% improvement
 - accuracy
 - robustness
- R1 & R4 since 2002

Products: Individual and combined TRF

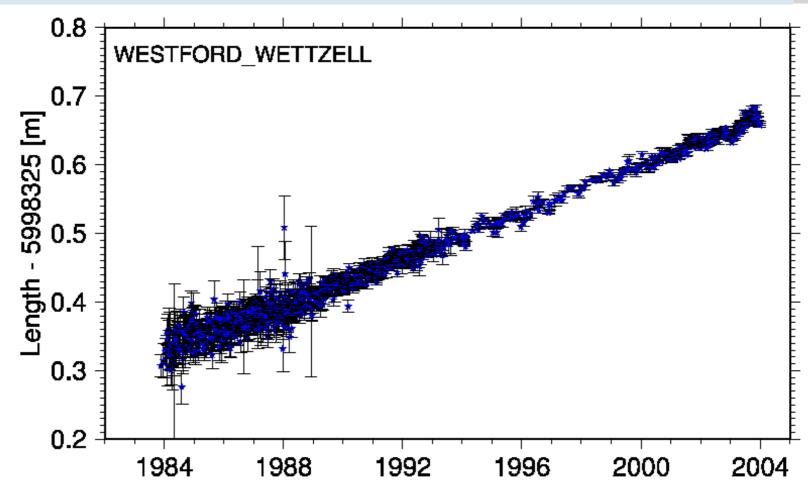
• ITRF2005 (Altamimi et al., 2007)



IVS Analysis Centers (Vennebusch et al., 2007)

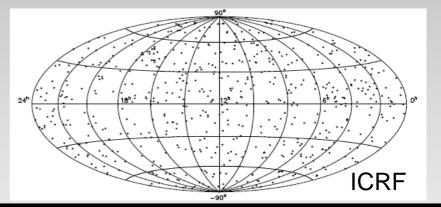
BKG

MAO


IAA

IVS Analysis Centers

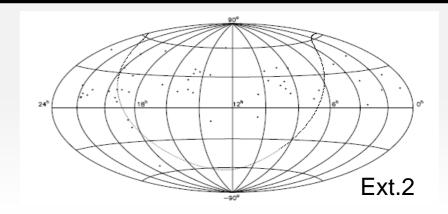
Individual TRF
 CGS
 GSFC


IVS Pilot Project: Time Series of Baseline Lengths

service available at http://vlbi.geod.uni-bonn.de/baseline-project/

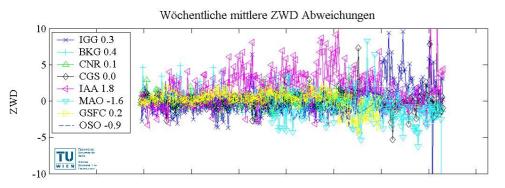
IVS products: ICRF

• ICRF (Ma et al, 1998) 212 defining 294 candidate 102 others

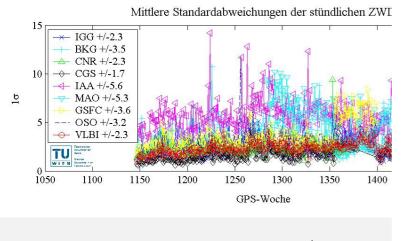


• ICRF-Ext.1 (IERS, 1999)

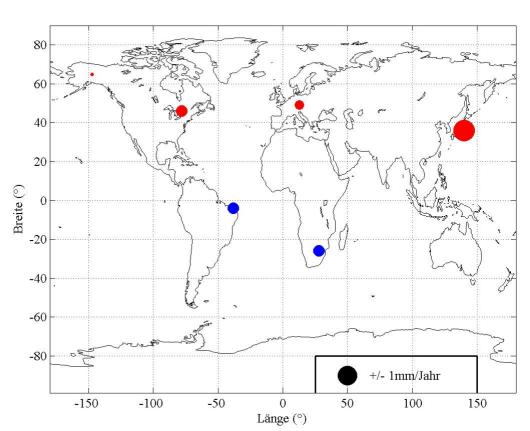
additional 59 new

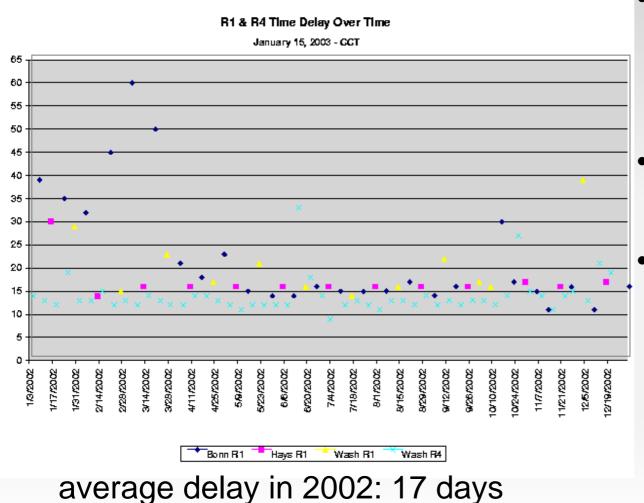

• ICRF-Ext.2 (Fey et al., 2004) additional 50 new

717 total

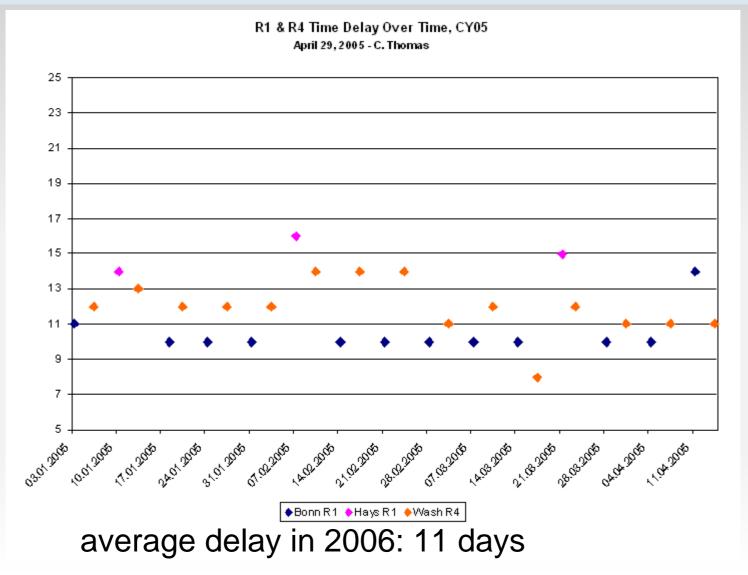


Ext.1


IVS tropospheric products


long-term combination

rapid combination



Improved delay from observation to product availability (1)

- 2 time series per week
 - IVS R1 (Bo, Ha, Wa)
 - IVS R4 (Wash)
 - Results available
 - approximately after two weeks
- Potential for improvements
 - Acceleration of transportation
 - e-VLBI
 - Correlator processing (employing MK5)

Improved delay from observation to product availability (2)

Working Groups and Committees

- WG1: GPS Phase Center Mapping (closed by 2000)
- WG2: IVS Product Specification and Observing Programs (closed by 2003) now
 + Observing Program Committee (OPC)
- WG3: VLBI2010 (closed by 2005) now + VLBI2010 Committee (V2C)
- WG4: VLBI Data Structures (very recently established)
- IERS/IVS WG: Second Realization of the ICRF (since 2007)

IVS WG2

IVS Working Group 2 for Product Specification and Observing Programs

> Final Report (13th of February 2002)

Harald Schuh (hschuh@luna.tuwien.ac.at)*' Patrick Charlot (charlot@observ.u-bordeaux.fr) Hayo Hase (hase@wettzell.ifaq.de) Ed Himwich (weh@ivscc.qsfc.nasa.qov) Kerry Kingham (kak@cygx3.usno.navy.mil) Calvin Klatt (klatt@qeod.emr.ca) Chopo Ma (na@leo.qsfc.nasa.qov) Zinovy Malkin (malkin@quasar.ipa.nw.ru) Arthur Niell (aen@haystack.mit.edu) Axel Nothnagel (nothnaqel@uni-bonn.de) Wolfgang Schlüter (schlueter@wettzell.ifaq.de) Kazuhiro Takashima (takasima@gsi.go.jp) Nancy Vandenberg (nrv@qemini.qsfc.nasa.qov)

*¹Institute of Geodesy and Geophysics, University of Technology Vienna, Gusshausstr. 27-29, 1040 Wien, Austria

Based on WG2 report: IVS observing programs started in 2002

=> Geodetic VLBI observations increased year by year

=> about 30% in 2002 compared to 2001
=> about 15% in 2003 compared to 2002
=> about 15% in 2004 compared to 2003

=> 2005 similar to 2004 => 2006 similar to 2005

=> about 5% in 2007 compared to 2006

Summary of current IVS main products status and goals (WG2)

Products	Specification	Status 2002	Status 2006	Goals (2010)
Polar Motion	accuracy product delivery	x _p ~ 100, y _p ~ 200 µas 1 – 4 weeks – 4 months	х _р , у _р : 50 – 80 µas 8 – 12 days	25 µas 1 day
(x _p , y _p)	resolution frequency of solution	1 day 3 days/week	1 day	10 min – 1 h 7 days/week
UT1-UTC	accuracy	5 – 20 µs	3 µs	2 µs
(DUT1)	product delivery	1 week	3 – 4 days	1 day
	resolution	1 day	1 day	10 min
Celestial Pole	accuracy product delivery	100 – 400 µas 1 – 4 weeks – 4 months	50 µas 3 – 4 days	25 μas 1 day
(dε; dψ)	resolution frequency of solution	1 day ~ 3 days/week	1 day	7 days/week
TRF (x, y, z)	accuracy	5 – 20 mm	5 mm	2 mm
CRF (α; δ)	accuracy	0.25 – 3 mas	0.25mas (improv. distribution)	0.25 mas (improv. of freq. bands)
	product delivery	3 – 6 months	3 months	1 month
	frequency of solution	1 year	1 year	

IVS WG3

VLBI2010: Current and Future Requirements for Geodetic VLBI Systems

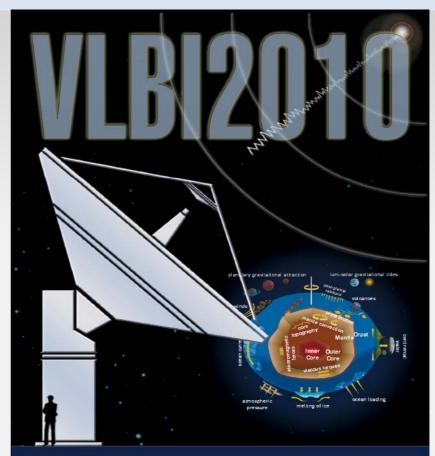
Arthur Niell (co-chair) Haystack Observatory, Massachusetts Institute of Technology, USA

Alan Whitney (co-chair) Haystack Observatory, Massachusetts Institute of Technology, USA

> Bill Petrachenko Natural Resources Canada, Canada

Wolfgang Schlüter Bundesamt für Kartographie und Geodäsie, Germany

Nancy Vandenberg NVI Inc./Goddard Space Flight Center, USA

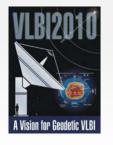

Hayo Hase Bundesamt für Kartographie und Geodäsie, Germany

Yasuhiro Koyama Kashima Space Research Center, NICT, Japan

> Chopo Ma Goddard Space Flight Center, USA

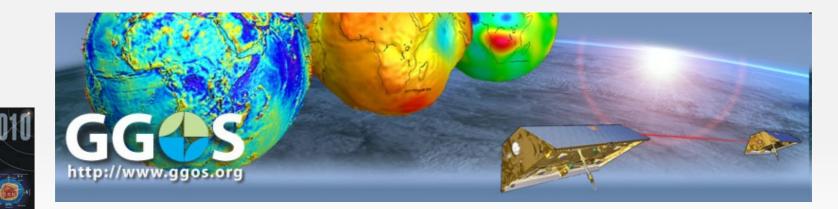
Harald Schuh Institute of Geodesy and Geophysics, University of Technology, Vienna, Austria

Gino Tuccari Italian National Astrophysical Institute – Radio Astronomy Institute, Italy


A Vision for Geodetic VLBI

September 16, 2005

IVS WG3 Motivation (1)


Status

- Most of VLBI equipment developed in 70's and 80's pushed to its limits
- Radio interference at S-Band increased
- Old slow moving antennas make it difficult to provide agile whole sky coverage
- Location of antennas is unbalanced in global distribution
- Operation costs remain high
- Processing time to final results is too long

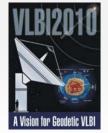
IVS WG3 Motivation (2)

- Aim Meet the requirements of GGAS IAG's Global Geodetic Observing System
 - < 1 mm (position) < 0.1 mm/year (velocity)</pre>
 - 7 days/week
 - near real-time availability of products

VLBI2010 – Recommendations (1)

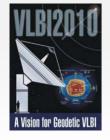
- Design a new observing system based on small antennas (10 -12m), fast moving, unattended operation, mechanically reliable, economically replicable
- Broad band delay, frequency range (e.g. 2 -18 GHz) includes S- and X-band
- Upgrade of large antenna to preserve continuity, maintaining CRF

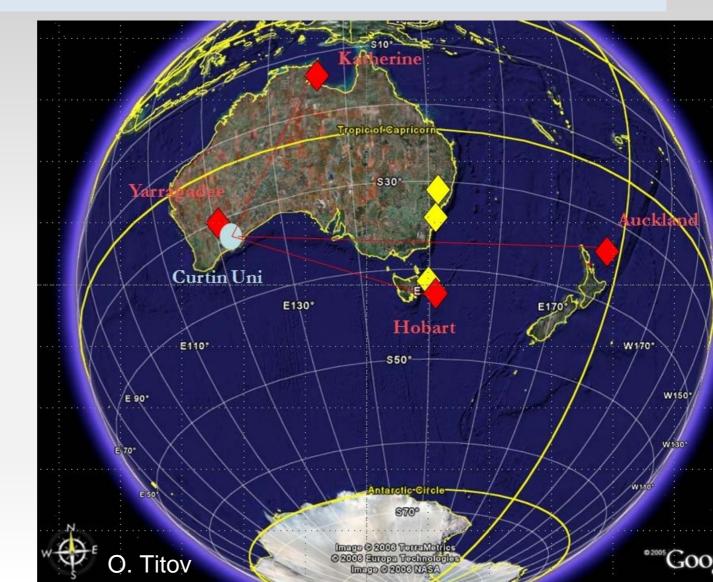
VLBI2010 – Recommendations (2)


- Transfer data with combination of high speed networks and high rate disk systems
- Examine the possibilities for a new correlator system (software correlator?)
- Automate and streamline the complete data analysis pipeline

VLBI2010 – plans (1)

VLBI2010 is supporting some proposals:

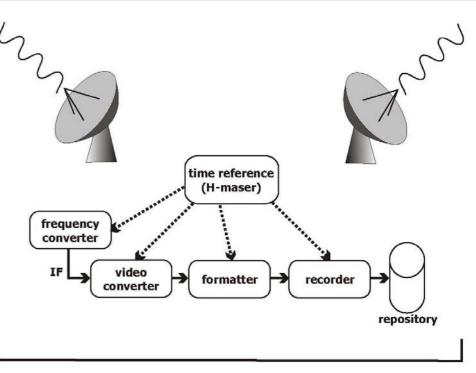

- Korean Institutes (KASI, NGII, Ajou Univ.)
- Geoscience Australia: proposal for 3 fundamental stations
- Univ. Tasmania (Hobart): getting operation money
- University of Concepcion/Chile: developing a telescope
- ISRO, India: 32m telescope for lunar mission extended for geodetic VLBI
- NASA Haystack: support of VLBI 2010 telescope / Gilmore Creek
- BKG: twin-telescope 2008-2010



VLBI2010 – plans (2)

Approved projects or new proposals

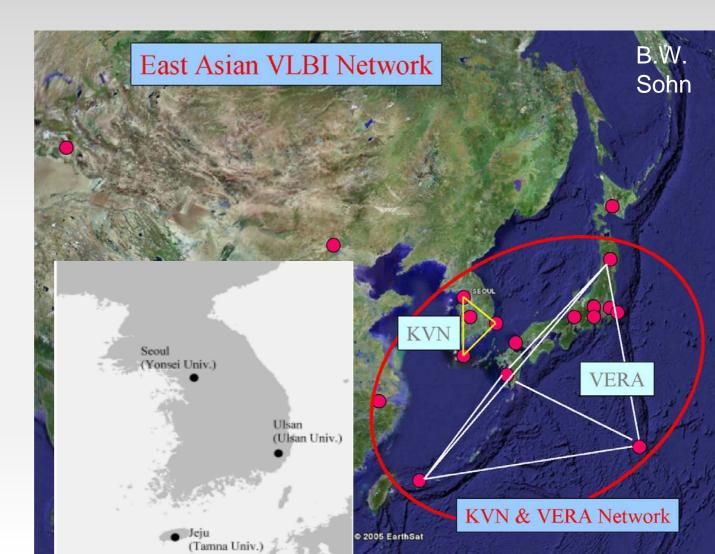
Australia & New Zealand (4)



VLBI2010 – plans (3)

"twin-telescope" at Wettzell, Germany Advantage:

- higher observation density
- continuous observations
- better determination of systematic effects
- one frequency standard
- one more local tie


observation station

VLBI2010 – plans (4)

Approved projects or new proposals

Australia & New Zealand (4) Germany (twin-telescope) South-Korea (3)

IERS/IVS WG on ICRF-2

• ICRF-2

to be completed Aug 2009

Tentative Milestones

·			
Generation of position time series:	first pass - April 2007 update - April 2008		
Analysis of position time series:	first pass - October 2007 update - June 2008		
Analysis of catalogue noise:	first pass - October 2007 update - June 2008		
Source structure catalogue:	first pass - October 2007 update - June 2008		
Source structure evolution:	first pass - March 2008 update - June 2008		
Selection of stable and/or unstable sources:	July 2008		
Selection of defining sources:	August 2008		
Second ICRF catalogue:	December 2008		
Presentation to IAU WG:	March 2009		
Presentation to IAU GA:	August 2009		

http://rorf.usno.navy.mil/ICRF2

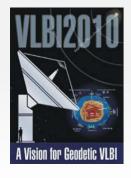
Continuous VLBI campaign 2008: CONT08

- August 12 26 2008, 15 days of continuous observation
- Best possible data quality
- 11 stations, collocated with GPS, DORIS, SLR
- special issue of Journal of Geodesy planned

Recent Publications

Journal of Geodesy special issue "VLBI"

- Volume 81, Numbers 6-8
- June 2007
- 17 articles including preface



Thank you for your attention!

rob@mars.hg.tuwien.ac.at

