Broadband Delay System Demonstration for VLBI2010

Arthur Niell MIT Haystack Observatory for the Broadband Delay Development Team

Geodetic VLBI

- Terrestrial reference frame ~ 1 cm
- Celestial reference frame
- Earth orientation parameters
 - \Box UT1 (time)
 - □ Nutation
 - □ Polar motion
- Two 24-hr "Rapid" sessions per week
- Another ~1.5 sessions/week for TRF and R&D

Geodetic VLBI

- Number of sites for geodetic VLBI ~ 40
- Use only 8 15 antennas per session
- Limited by:
 - Amount of observation time at individual sitesAmount of recording media

Motivation for new network

- Current geodetic VLBI antennas and equipment are aging
- Radio frequency interference (RFI) is increasing
- Accuracy is limited by slow antennas
- GGOS requires geodetic position accuracy of 1 mm in 24 hours using VLBI, GPS, and SLR

IVS VLBI2010 Committee

- Derive new system concept through simulations and sensitivity calculations
 - $\hfill\square$ Turbulent atmosphere based on met data
 - □ Clock and frequency standard performance
 - □ System noise
- Recommend small fast antennas with high delay precision
- Implement in hardware to evaluate the concept

VLBI2010 Model

- Fast slewing ≥ 12 meter diameter antenna
- Network of 16 40 antennas globally
- Broad-band feed and amplifiers
- Multiple bands covering 2 GHz to ~15 GHz
- Data record rates of 8 gigabits per second and higher
- Ideally 24/7 operation and rapid results

Main uncertainties

Atmosphere effects

 Turbulence in space and time
 Mapping functions

 Source structure phase
 Must correct for structure phase over frequency range ~2.2 GHz to 14 GHz.

Structure-phase vs frequency (simulation)

- Generate spectrum from 1 GHz to 15 GHz from S and X band maps (Fey and Charlot 2000) and approximated component spectra
- Calculate complex visibilities as function of frequency for 6400 km baseline at various orientations

0248+430

VLBI2010 Progress Report

Recovered source structure (Colliaud and Charlot 2008 IVS GM)

VLBI2010 Broadband Demonstration

Antennas - Westford 18 m and GGAO 5 m

Feed Phase cal injection Low noise amplifiers Optical fiber Splitter to 4 bands Flexible local oscillators Digital back ends Mark5B+ recorders

Cooled (20K)

Feed and LNAs cooled to ~20K

Both senses of linear polarization used

2 gigabits/sec recorded on each Mk5B+

Total data rate: 8 gbps

MV-3 5M Antenna @ GGAO

8 gigabit/sec LOs and back end

Broadband Delay Team

Bruce Whittier¹, Mike Titus¹, Jason SooHoo¹, Dan Smythe¹, Alan Rogers¹, Jay Redmond², Mike Poirier¹,
Arthur Niell¹, Chuck Kodak³, Alan Hinton¹, Ed Himwich³, Skip Gordon², Mark Evangelista², Irv Diegel², Brian Corey¹, Tom Clark³, Chris Beaudoin¹

(in reverse alphabetical order)

¹ MIT Haystack Observatory ² HTSI, Inc ³ GSFC/NVI

with thanks to Sandy Weinreb and Hamdi Mani, Caltech

Status and plans - 2008 September

- Fringes have been demonstrated for X-band
- Both sites set up for four-band observation
- Phase cal testing in progress

□ Phase cal is critical for phase delay

First multi-band observations planned for next two weeks

Next steps

- Set all four bands at same frequency
- Spread bands to demonstrate phase connection on simple source
- Look at effect of complex source structure
- Improve sensitivity of 5 m antenna
- Order 12 m antenna to replace 5 m antenna near Washington, D.C., probably similar to NZ and AuScope antennas.

12 m Antenna

,84

Lindgren feed (linear pol'n)

Cryo Refrigerator 20K Station

77K Station