Multi-step VLBI observations of weak extragalactic radio sources

Aligning the ICRF & the future Gaia frame

G. Bourda¹, P. Charlot¹, R. Porcas² & S. Garrington³

(1) Laboratoire d’Astrophysique de Bordeaux (LAB), France
(2) MPIfR, Bonn, Germany
(3) Jodrell Bank Observatory, Manchester, UK
Overview

Multi-step VLBI observations of weak extragalactic radio sources

1. **Context:** Why these observations?

2. **Strategy of observation**

3. **First-step experiments**
 Some results

4. **Conclusions & Prospects**
Motivation: 2015-2020 → 2 extragalactic celestial reference frames

Ma et al. 1998 / Fey et al. 2004
International Celestial Reference Frame

Perryman et al. 2001
1. Context

Motivation: 2015-2020 → 2 extragalactic celestial reference frames

- ICRF: 717 extragalactic sources
 - ICRF-2: ~1000 sources
- Radio; VLBI (S/X bands; 2/8 GHz)
- Position accuracy:
 - ICRF: $\sigma = 250 \, \mu\text{as}$
 - ICRF-2: $\sigma < 100 \, \mu\text{as}$
1. Context

Motivation: 2015-2020 → 2 extragalactic celestial reference frames

- **ICRF:** 717 extragalactic sources
- **ICRF-2:** ~1000 sources
- Radio; VLBI (S/X bands; 2/8 GHz)
- **Position accuracy:**
 - ICRF: $\sigma = 250 \ \mu\text{as}$
 - ICRF-2: $\sigma < 100 \ \mu\text{as}$
- **Position accuracy:**
 - $16 \ \mu\text{as} \leq \sigma \leq 70 \ \mu\text{as} @ 15 \leq V \leq 18$

- **Gaia:**
- 2011
- ~10 000 QSOs
- Optical domain / $V \leq 20$

September 23-26, 2008

9th EVN Symposium – Bologna, Italy
1. Context

Motivation: 2015-2020 → 2 extragalactic celestial reference frames

Important to align accurately the ICRF & the future Gaia frame:

- Several hundreds of common sources
- Precise radio (VLBI) and optical (Gaia) positions:
 - 18~
 - No extended VLBI structures

(Charlot 1990) (Mignard 2003)
1. ICRF sources with an accurate Gaia position: $V \leq 18$

Optical magnitude distribution
1. ICRF sources with an accurate Gaia position: $V \leq 18$

Optical magnitude distribution

~30% ICRF
1. ICRF sources with an accurate Gaia position: $V \leq 18$

2. Accurate ICRF position:
 Compact sources (i.e. SI = 1 or 2)

Fey & Charlot 1997, 2000; Charlot et al. 2006

Optical magnitude distribution
1. ICRF sources with an accurate Gaia position: $V \leq 18$

2. Accurate ICRF position:
 Compact sources (i.e. $SI = 1$ or 2)

Optical magnitude distribution

X-band Structure Index distribution
1. ICRF sources with an accurate Gaia position: $V \leq 18$

2. Accurate ICRF position:
 - Compact sources (i.e. $SI = 1$ or 2)
 - $\sim 30\%$ ICRF

$\sim 10\%$ ICRF

70 sources is not enough: Necessity to find other VLBI radio sources suitable for aligning accurately VLBI & Gaia frames
VLBI sources currently available for astrometry & geodesy

ICRF catalogue

VCS catalogue
VLBA Calibrator Survey
Petrov et al. 2008
VLBI sources currently available for astrometry & geodesy

- **ICRF catalogue**
 - 717 extragalactic radio sources
 - X-band flux density ~700 mJy

- **VCS catalogue**
 - ~3000 extragalactic radio sources
 - X-band flux density ~200 mJy
VLBI sources currently available for astrometry & geodesy

- ICRF catalogue
 - New VLBI sources: To go to weaker sources < 100 mJy
 - 717 extragalactic radio sources
 - X-band flux density ~700 mJy

- VCS catalogue
 - ~3000 extragalactic radio sources
 - X-band flux density ~200 mJy

September 23-26, 2008 9th EVN Symposium – Bologna, Italy
2. **Strategy of observation:**

Multi-step VLBI observations of weak radio sources

- **Criteria for the sample:** ~ 450 sources

- **VLBI network:** EVN

- **Strategy of observation:** 3 steps over several years
2. Strategy of observation:
Multi-step VLBI observations of weak radio sources

- **Criteria for the sample:** ~ 450 sources
 - Dense radio catalogue NVSS (NRAO VLA Sky Survey): ICRF & VCS excluded
 - $V \leq 18$ (i.e. accurate Gaia position)
 - NVSS total flux density ≥ 20 mJy
 - $\delta \geq -10^\circ$

- **VLBI network:** EVN

- **Strategy of observation:** 3 steps over several years
2. Strategy of observation:
Multi-step VLBI observations of weak radio sources

- **Criteria for the sample:** ~ 450 sources
 - Dense radio catalogue NVSS (NRAO VLA Sky Survey): ICRF & VCS excluded
 - \(V \leq 18 \) (i.e. accurate Gaia position)
 - NVSS total flux density \(\geq 20 \) mJy
 - \(\delta \geq -10^\circ \)

- **VLBI network:** EVN
 - The most sensitive VLBI network:
 - Large antennas (ex. Effelsberg, Ø 100 m).
 - High rate recording (1Gbps)

- **Strategy of observation:** 3 steps over several years
2. Strategy of observation:
Multi-step VLBI observations of weak radio sources

• Criteria for the sample: ~ 450 sources

- Dense radio catalogue NVSS (NRAO VLA Sky Survey): ICRF & VCS excluded
- $V \leq 18$ (i.e. accurate Gaia position)
- NVSS total flux density ≥ 20 mJy
- $\delta \geq -10^\circ$

• VLBI network: EVN

 - The most sensitive VLBI network:
 Large antennas (ex. Effelsberg, \varnothing 100 m).
 - High rate recording (1Gbps)

• Strategy of observation: 3 steps over several years

 1. VLBI detection
 2. Mapping of the sources detected
 3. Accurate astrometric positions for the most compact sources.

Because mostly never observed before in VLBI…
3. First-step experiments: VLBI detectability

Two 48-hours experiments (S/X dual-frequency geodetic style @ 1Gbps):

- **EC025A**: June 2007 → 224 sources observed (mostly from CLASS)
- **EC025B**: October 2007 → 223 sources observed
3. First-step experiments: VLBI detectability

Two 48-hours experiments (S/X dual-frequency geodetic style @ 1Gbps):

\[
\begin{align*}
\text{EC025A}: & \quad \text{June 2007} \quad \rightarrow \quad \text{224 sources observed (mostly from CLASS)} \\
\text{EC025B}: & \quad \text{October 2007} \quad \rightarrow \quad \text{223 sources observed}
\end{align*}
\]

European network: 4/5 antennas

- Effelsberg, Germany (Ø 100 m)
- Noto, Italy (Ø 32 m)
- Medicina, Italy (Ø 32 m)
- Onsala, Sweden (Ø 25 m)
- + Robledo, Spain (Ø 70 m) for EC025B
3. First-step experiments: VLBI detectability

Two 48-hours experiments (S/X dual-frequency geodetic style @ 1Gbps):

\[
\begin{align*}
\text{EC025A: } & \text{ June 2007 } \quad \Rightarrow \quad 224 \text{ sources observed (mostly from CLASS)} \\
\text{EC025B: } & \text{ October 2007 } \quad \Rightarrow \quad 223 \text{ sources observed}
\end{align*}
\]

European network: 4/5 antennas

<table>
<thead>
<tr>
<th>Effelsberg, Germany</th>
<th>Noto, Italy</th>
<th>Medicina, Italy</th>
<th>Onsala, Sweden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ø 100 m</td>
<td>Ø 32 m</td>
<td>Ø 32 m Ø 25 m</td>
<td>Ø 25 m</td>
</tr>
</tbody>
</table>

S/X detection rates:

\[
\begin{align*}
\text{EC025A} & \Rightarrow \quad \sim 94 \% \\
\text{EC025B} & \Rightarrow \quad \sim 82 \%
\end{align*}
\]
3. First-step experiments: VLBI detectability

Two 48-hours experiments (S/X dual-frequency geodetic style @ 1Gbps):

- **EC025A**: June 2007 → 224 sources observed (mostly from CLASS)
- **EC025B**: October 2007 → 223 sources observed

European network: 4/5 antennas

- Effelsberg, Germany (Ø 100 m)
- Noto, Italy (Ø 32 m)
- Medicina, Italy (Ø 32 m)
- Onsala, Sweden (Ø 25 m)
- + Robledo, Spain (Ø 70 m) for EC025B

S/X detection rates:

- **EC025A**: ~ 94 %
- **EC025B**: ~ 82 %

Overall detection rate: ~ 89 %
Flux density distributions: EC025A/B

X-band (mJy)

Median ~26 mJy

S-band (mJy)

Median ~46 mJy
VCS: Median = 210 mJy

ICRF: Median = 700 mJy

EC025A + EC025B: Median = 26 mJy

X-band flux density distribution
Zoom: < 100 mJy region

- **EC025A/B**: 371 sources
- **VCS**: 320 sources
S/X Spectral Index distribution

median = -0.34

398 sources detected
224 sources from CLASS

Number of objects

S/X Spectral Index α

9th EVN Symposium – Bologna, Italy
S/X Spectral Index distribution

- Median: -0.34

Number of objects

S/X Spectral Index α

398 sources detected
224 sources from CLASS

224 CLASS sources
S/X Spectral Index distribution

median = -0.34

Sources with compact core: \(\alpha > -0.5 \)
4. Conclusion & Prospects

- **What’s new?**

 398 new VLBI sources as candidates for the ICRF–Gaia link

 Link sources ~30 x weaker than ICRF sources

 First step very promising

 ~90% detection rate → Detection step unnecessary?
4. Conclusion & Prospects

• **What’s new?**

 398 new VLBI sources as candidates for the ICRF–Gaia link

 Link sources ~30 x weaker than ICRF sources

 ➔ First step very promising
 ➔ ~90% detection rate ➔ Detection step unnecessary?

• **Follow up:**

 Estimate VLBI positions for the sources detected

 VLBI imaging of the sources detected (second step):

 105 sources observed in March 2008

 VLBA + EVN (48h, S/X @ 512 Mbps)
4. Conclusion & Prospects

• **What’s new?**

 398 new VLBI sources as candidates for the ICRF–Gaia link
 Link sources ~30 x weaker than ICRF sources

 ➡️ First step very promising
 ➡️ ~90% detection rate ➡️ Detection step unnecessary?

• **Follow up:**

 Estimate VLBI positions for the sources detected
 VLBI imaging of the sources detected (second step):
 105 sources observed in March 2008
 VLBA + EVN (48h, S/X @ 512 Mbps)

• **Further objectives:**

 1. Optical survey of these weak radio sources for variability studies.
 2. Survey in the southern hemisphere (APT)?
 3. Study of physical properties of weak sources.
ICRF–Gaia alignment:

Determining AGN optical/radio core shifts

→ Constrain AGN general geometry

Recent estimation: \(~100 \, \mu\text{as}\) (Kovalev et al. 2008)

AGN unified model
Urry & Padovani, 1995
Acknowledgements

- John Gipson (SKED)
- Dave Graham / Walter Alef (Correlation)
- Alexander Andrei (optical positions delivery)
- RadioNet for financial support during the 9th EVN Symposium
Structure Index (X-band)

Fey & Charlot 1997, 2000
Charlot et al. 2006

0642+449
SI = 1
Point-like source

OJ287
SI = 2
Source not extended

0656+082
SI = 3
Extended source

0711+356
SI = 4
Source very extended

~30 mas
Flux density distributions

X-band EC025A: 222 sources; median = 32 mJy

Weakest source ~4 mJy

S-band EC025A: 211 sources; median = 55 mJy

Weakest source ~20 mJy
Flux density distributions

X-band EC025A: 222 sources; median = 32 mJy
Weakest source ~4 mJy

S-band EC025A: 211 sources; median = 55 mJy
Weakest source ~20 mJy

X-band EC025B: 216 sources; median = 19 mJy
Weakest source ~1 mJy

S-band EC025B: 188 sources; median = 37 mJy
Weakest source ~8 mJy
S/X Spectral Index distribution

\[
\frac{\text{Flux (S-band)}}{\text{Flux (X-band)}} = \left(\frac{2.3}{8.4} \right)^\alpha
\]

Sources with compact core: \(\alpha > -0.5 \)

EC025A: 211 sources; \(\alpha \approx -0.3 \)

EC025B: 187 sources; \(\alpha \approx -0.35 \)
S/X Spectral Index distribution

\[
\frac{\text{Flux (S-band)}}{\text{Flux (X-band)}} = \left(\frac{2.3}{8.4} \right)^{\alpha}
\]

Sources with compact core: \(\alpha > -0.5 \)

EC025A: 211 sources; \(\alpha \sim -0.3 \)

EC025B: 187 sources; \(\alpha \sim -0.35 \)
Results summary:

EC025A + EC025B

398 sources S/X detected

median = -0.34

224 CLASS sources
Results summary:

EC025A + EC025B

398 sources S/X detected

median = -0.34

224 CLASS sources

9 % 22 % 69 %