OH maser envelopes of the "water fountain" sources

Hiroshi Imai Faculty of Science, Kagoshima University

Total Solar Eclipse on 22 July 2009 in Kagoshima Photo by J. Shukuya

"Water fountains": collimated fast stellar jets

H₂O/OH masers in W43A (Imai et al. 2002)

SPITZER/GLIMPSE image around W43A (Deguchi+ 2007)

Very fast (>100 km/s) from AGB/post AGB starts Very young/short lived (<100 years) Very drastic (dM/dt>10⁻⁴M_{sun}yr⁻¹)

What is the water fountain precursor?

What happens in the final AGB phase?

The H₂O maser jet and the 1612 MHz OH maser envelope driven by the same stellar object?

EVN/Global VLBI observations of 1612 MHz OH masers

Collaboration with

Phil Diamond (JBCA) Jun-ichi Nakashima, Sun Kwok (Hong Kong Univ.) Shuji Deguchi (NRO)

- Toward W43A (1994 June 2007 June)
 - VLBA (BD03, BD20, BI24), Global VLBI (GI01, GI04)
 - Phase-referencing for astrometry: successful in GI04 with J1833+0115=LANA (4.72 deg away)
- Toward IRAS 18286-0959 & 18460-0151 (2007 June)
 - EVN (EI09: Ef,Wb,Jb1,Tr,Cm,On25,Mc,Nt,Hh)
 - Phase-referencing for astrometry with
 - J1832-1035 (for IRAS 18286-0959, 0.67 deg away)
 - J1833+0115=LANA (for IRAS 18460-0151, 4.96 deg away) EVN Members MAG 03/2002

W43A OH masers

Spherical expansion with elongation ~9 km/s in L.O.S

Opposite velocity gradient against H₂O

Envelope dynamical age 150—300 years

W43A OH shell expansion

IRAS 18286-0959

Arcs in 3 elliptical patterns

IRAS 18286-0959

Point symmetry in position and velocity

IRAS 18460-0151 High velocity jet (~180 km/s) Equatorial/spherical flow (\sim 15 km/s) Similar scale and velocity in the H₂O and OH regions opposite velocity gradients

Dynamical centers within 30 AU

Kinematic distance ~6.8 kpcH₂O model fitting distance ~2 kpc

Parameters

	V _{jet} (H ₂ O) [km/s]	V _{envelope} (H ₂ O/OH) [km/s]	t _{jet} (H ₂ O) [year]	t _{envelope} (OH) [year]	Separation [AU]
W43A	~150	~30/10	~35	150-300	10—100?
IRAS 18286-0959	~180	~?/15	~15	?	~40?
IRAS 18460-0151	~190	~10/15	~5	>20	~30?

- Co-location of a high-velocity collimated jet and a low-velocity spherical envelop within 100 AU.
- Separation between a high-velocity collimated jet and a low-velocity spherical envelop by > 10 AU?
- Speeds of the OH envelopes/H₂O equatorial flows: ~10-20 km/s ~ V(typical AGB envelope

Simultaneous development of a stellar jet and an envelope/torus

- Common sequence of evolution between PPNe and water fountains
- Time lag ~ <u>200-300 years</u>
- Interaction event between a torus followed by a jet on a short time scale
- Binary system scenario may produce the interaction event and explain (multiple) discrete mass ejection.
- The interaction event may occur in AGB phase.

