Exploring the powering source of the TeV X-ray binary LS 5039

Javier Moldón Marc Ribó Josep Maria Paredes

Josep Martí (Univ. Jaén) Maria Massi (MPIfR)

9th European VLBI Network Symposium Bologna, Italy – September 26, 2008

OUTLINE

- The binary system LS 5039
- Proposed scenarios for the gamma-ray binary
- Testing the scenarios at milliarcsecond scales
- New VLBA radio observations
- Compendium of VLBA images
- Conclusions

The binary system LS 5039

- Distance 2.5 ± 0.5 kpc.
- Compact object 1.5 M_{\odot} < M < 10 M_{\odot} .
- Orbital period 3.9 days.

- LS 5039 is an O6.5 V((f)) bright star.
- System inclination $11^{\circ} < i < 65^{\circ}$.
- Eccentricity 0.35 ± 0.04 (0.1-0.2 AU).
- Based on the mass function and inclination, the probability of being a BH is ~20 %.
- If the system is pseudo-synchronized then i ~25° and M ~3.7 M_{\odot} , but age ≥ 1 Myr after SN.

[Casares et al. 2005, MNRAS, 364, 899] al. 2005]

Possible scenarios

- An accretion disk is formed by mass transfer.
- Display bipolar jets of relativistic plasma.
- The jet electrons produce radiation by synchrotron emission when interacting with magnetic fields.

• VHE emission is produced by inverse Compton scattering when the jet particles collide with stellar UV photons, or by hadronic processes when accelerated protons collide with stellar wind ions.

[Bosch-Ramon et al. 2006, A&A, 447, 263; Paredes et al. 2006, A&A, 451, 259; Romero et al. 2003, A&A, 410, L1]

- The relativistic wind of a young (ms) pulsar is contained by the stellar wind.
- Particle acceleration at the termination shock leads to synchrotron and inverse Compton emission.
- After the termination shock, a nebula of accelerated particles forms behind the pulsar.
- The cometary nebula is similar to the case of isolated pulsars moving through the ISM.

[Maraschi & Treves 1981, MNRAS, 194, P1; Dubus 2006, A&A, 456, 801; Sierpowska-Bartosik & Torres 2007, ApJ, 671, L145]

Testing at mas scales

Central core with extended iet-like (bipolar) radio emission.

The projection effects and the Doppler boosting produce a flux and distance asymmetry.

The direction of the jet remains constant during an orbital cycle. But it can display long-term precession.

[Mirabel & Rodríguez 1999, ARA&A, 37, 409; Fender 2006, Compact stellar Xray sources, 381]

Shocks with the stellar wind can disrupt the jets (clumpy wind?).

[Perucho & Bosch-Ramon 2008, A&A, 482, 917]

Microquasar

The cometary tail of cooling material displays synchrotron radio emission The peak of the emission follows the path of an elliptic orbit

The direction of the tail changes with the pulsar's orbital motion.

Previous radio observations

- The radio emission is persistent, non-thermal, and variable. [Ribó et al. 1999, A&A, 347, 518]
- No outburst or periodic variability have been detected. [Clark et al. 2001, A&A, 376, 476]
- No radio pulses have been detected at 1.4 GHz. [Morris et al. 2001, MNRAS, 335, 275]

At all scales it shows elongated bipolar extended emission with P.A. between 125-150°

VLBA Observations

GR021 June 2000

[Ribó et al. 2008, A&A, 481, 17]

VLBA + VLA at 5 GHz. Recorded at 256 Mbps.

Duration: 8 hr (0.08 of phase).

2 runs separated 5 days (different orbital cycles)

Phases: 0.47 0.75

GR021 (2000) - results

Run	Comp.	Peak $S_{5 \text{ GHz}}$	$S_{5 \rm ~GHz}$	T	P.A.	$\Delta \alpha$	$\Delta\delta$	Maj. Axis	Min. Axis	P.A. _{Axis}
	194	$[mJy beam^{-1}]$	[mJy]	[mas]	[°]	[mas]	[mas]	[mas]	[mas]	[°]
Α	Core1	10.54 ± 0.08	20.0 ± 0.2	3 <u></u> 3		3 3	<u></u>	3.69 ± 0.03	2.09 ± 0.02	103 ± 1
	SE1	1.11 ± 0.08	2.6 ± 0.2	3.67 ± 0.08	115.9 ± 1.7	3.30 ± 0.07	-1.60 ± 0.12	4.1 ± 0.3	2.36 ± 0.16	17 ± 5
	NW1	0.88 ± 0.08	1.5 ± 0.2	3.29 ± 0.09	-63 ± 2	-2.92 ± 0.08	1.52 ± 0.14	3.6 ± 0.3	1.99 ± 0.18	3 ± 6
В	Core2	10.45 ± 0.11	17.6 ± 0.3	:	3	3. 		3.71 ± 0.04	1.8 ± 0.2	180 ± 1
	SE2	0.75 ± 0.11	1.8 ± 0.4	$2.8\ \pm\ 0.2$	129 ± 5	2.17 ± 0.13	-1.8 ± 0.3	4.6 ± 0.7	2.1 ± 0.3	1 ± 7
	NW2	2.22 ± 0.11	3.9 ± 0.3	2.94 ± 0.06	-52.2 ± 1.4	-2.32 ± 0.04	1.80 ± 0.09	4.3 ± 0.2	1.68 ± 0.08	174 ± 2

[Ribó et al. 2008, A&A, 481, 17]

GR021 (2000) - results

- 1. The two VLBA runs separated 5 days, show a changing morphology at mas scales.
- 2. In both runs there is a core component with a constant flux density, and an elongated emission with a P.A. that changes by $12 \pm 3^{\circ}$ between both runs.
- 3. The brightest emission changes its sense from south-east to north-west.
- 4. There is a symmetry change. The source is nearly symmetric in run A and asymmetric in run B.
- 5. No significant changes in images from half of the 8 hours of data on each day.
- 6. No reliable astrometric results obtained with current data.

GR021 (2000) - interpretation

• Assuming ballistic motions of adiabatically expanding plasma clouds without shocks:

	Distance asy	mmetry	Flux asymmetry				
			continuous	(k=2)	discrete (k=3)		
run	$\beta \cos \theta$	θ (°)	$\beta \cos \theta$	θ(°)	$\beta \cos \theta$	θ (°)	
А	0.06 ± 0.02	< 87	0.11 ± 0.03	< 84	0.08 ± 0.02	< 85	
В	symmetric		0.15 ± 0.05	< 81	0.11 ± 0.03	< 84	

Upper limits to the proper motions of the components at 3σ restrict the angle between the approaching jet and the line of sight

Microquasar

Pulsar

 $\theta < 48^{\circ} \, \text{SE}$ Fast jet precession? $\theta < 45^{\circ} \, \text{NW}$ But strong P.A. variations not seen.

- Alternatively, run B can be a discrete ejection. But X-ray and radio flares are not observed
- The morphology changes can be due to interaction between the jet and a clumpy stellar wind.
- In the young non-accreting pulsar scenario, the inclination of the binary system has to be high (edge on), being very close to the upper limit imposed by the absence of X-ray eclipses (i ~ 75°).

