Multi-step VLBI observations of weak extragalactic radio sources Aligning the ICRF & the future Gaia frame

<u>G. Bourda</u>¹, P. Charlot¹, R. Porcas² & S. Garrington³

- (1) Laboratoire d'Astrophysique de Bordeaux (LAB), France
- (2) MPIfR, Bonn, Germany
- (3) Jodrell Bank Observatory, Manchester, UK

Consortium for Very Long Baseline Interferometry in Europe

- ✓ 450 weak extragalactic radio sources (flux density ≤ 100 mJy) Never observed with VLBI before
 - → Very high sensitivity necessary
 - ➡ Choice of the EVN (Effelsberg, 1Gb/s)

 ✓ 450 weak extragalactic radio sources (flux density ≤ 100 mJy) Never observed with VLBI before

→ Very high sensitivity necessary

- ➡ Choice of the EVN (Effelsberg, 1Gb/s)
- ✓ In a first time, interest in VLBI detection only: No imaging interest No astrometry interest

 ✓ 450 weak extragalactic radio sources (flux density ≤ 100 mJy) Never observed with VLBI before

→ Very high sensitivity necessary

- ➡ Choice of the EVN (Effelsberg, 1Gb/s)
- ✓ In a first time, interest in VLBI detection only: No imaging interest No astrometry interest
- ✓ Two 48-hours experiments
 Dual-frequency S/X geodetic style @ 1Gb/s

EC025A: June 2007 \longrightarrow 224 sources observed EC025B: October 2007 \longrightarrow 223 sources observed

 ✓ 450 weak extragalactic radio sources (flux density ≤ 100 mJy) Never observed with VLBI before

→ Very high sensitivity necessary

- ➡ Choice of the EVN (Effelsberg, 1Gb/s)
- ✓ In a first time, interest in VLBI detection only: No imaging interest No astrometry interest
- ✓ Two 48-hours experiments
 Dual-frequency S/X geodetic style @ 1Gb/s

EC025A: June 2007 \longrightarrow 224 sources observed EC025B: October 2007 \longrightarrow 223 sources observed

✓ 4/5 antennas: Effelsberg, Medicina, Noto, Onsala & Robledo (only EC025B)

EVN Users Meeting

Proposal process

Call Writing Submitting Information Review

Proposal process

Call Writing Submitting Information Review

Collaborators:

* EVN Scheduler

* Previous chairman of the EVN PC

Proposal process

Call Writing Submitting Information Review

Collaborators:

- * EVN Scheduler
- * Previous chairman of the EVN PC

Scheduling

✓ In practice, difficult to plan optimized 48-hrs observations of more than 200 sources: Help from John Gipson (NASA/GSFC)

Telescope sky coverage optimization (SCHED): not necessary; Telescope slewing time optimization (SKED): required.

Figulting bacques of the recording @ 1 Ch/g @ Effelsherg: Help from Dev

 ✓ Difficulties because of the recording @ 1 Gb/s @ Effelsberg: Help from Dave Graham (MPIfR, Bonn)

Specific frequency setup had to be implemented (geodetic-style).

- \checkmark Lack of information about the possible bandwidth frequencies @ Robledo.
- \checkmark EVN Status table (web) could be more pleasant to read.

Correlation

- ✓ Bonn correlator (geodesy)
- ✓ Efficient: very radiply correlated

Correlation

- ✓ Bonn correlator (geodesy)
- ✓ Efficient: very radiply correlated

Analysis

- \checkmark Geodetic softwares used for the analysis (fourfit)
- ✓ Dave Graham implemented a specific version for us!

Correlation

- ✓ Bonn correlator (geodesy)
- ✓ Efficient: very radiply correlated

Analysis

- \checkmark Geodetic softwares used for the analysis (fourfit)
- ✓ Dave Graham implemented a specific version for us!

Performance of the array

- ✓ Suffered from the weakness of the S-band receiver @ Effelsberg
- ✓ Supplemented by Robledo during EC025B: good solution

Correlation

- ✓ Bonn correlator (geodesy)
- ✓ Efficient: very radiply correlated

Analysis

- \checkmark Geodetic softwares used for the analysis (fourfit)
- ✓ Dave Graham implemented a specific version for us!

Performance of the array

- ✓ Suffered from the weakness of the S-band receiver @ Effelsberg
- ✓ Supplemented by Robledo during EC025B: good solution

Quality of the observations

- ✓ S-band interferences
- ✓ Very few telescope failures

Correlation

- ✓ Bonn correlator (geodesy)
- ✓ Efficient: very radiply correlated

Analysis

- \checkmark Geodetic softwares used for the analysis (fourfit)
- ✓ Dave Graham implemented a specific version for us!

Performance of the array

- ✓ Suffered from the weakness of the S-band receiver @ Effelsberg
- ✓ Supplemented by Robledo during EC025B: good solution

Quality of the observations

- ✓ S-band interferences
- ✓ Very few telescope failures

Scientific goals met?

✓ Much more detections than expected, finally! $\sim 90\%$

Thanks for your attention ...

11

panan in

II. Sample

- 447 weak extragalactic radio sources
- To observe with S/X geodetic style directly in VLBI
- No published VLBI observations for most of them
- Sources from NVSS survey (NRAO VLA Sky Survey; Condon et al. 1998)

Optical counterpart / $V \le 18$

Observable with VLBI northern arrays: $\delta \ge -10^{\circ}$

NVSS integrated flux density @ $1.4 \text{ GHz} \ge 20 \text{ mJy}$

	SNR			
	Eb–Mc	Eb–Nt	Eb–On	Eb–VLBA
X band	49	32	22	50
S band	11	8	(7)	13

III. Observations: First step = VLBI detectability

Two 48-hours experiments (dual-frequency S/X geodetic style @ 1Gb/s):

EC025A: June 2007 \longrightarrow 224 sources observed

EC025B: October 2007 \longrightarrow 223 sources observed

European network: 4/5 antennas

S/X detection rates:

Flux density distributions

1-hour observations = 10 scans

 \implies Time recording @ each telescope ~80% of the total duration of each experiment

EVN Users Meeting

Useful to other users:

- ✓ Request made to NASA/GSFC so that calibrators used here be observed during near RDV experiment (scheduled on July 10, 2007).
- \implies Calibration of the visibility amplitudes.
- \implies Accurate estimates of the flux density of the targets.
- ✓ No attempt made for optimizing sky coverage above each telescope (usually done with astrometry/geodetic-style experiments, in order to estimate tropospheric zenith delays)
- Because astrometric accuracy was not the motivation at this stage.