GAMMA-RAY BUBBLES, JETS, AND LINES IN THE MILKY WAY

Meng Su

(Einstein/Pappalardo fellow) MIT/Harvard University

Collaborators: Douglas P. Finkbeiner

IAU General Assembly, Beijing JD6, August 24th 2012

Fermi Bubbles

Giant gamma-ray structure with sharp edges Discovered using data from Large Area Telescope (LAT) on-board Fermi Gamma-ray Space Telescope

Rise up & down from the Galactic center

They are:

> 50 degrees high (~8.5 kpc)

> Well centered on longitude zero (close to latitude zero)

Imply ~TeV electron energy!

The Fermi-LAT three year maps

Su & Finkbeiner (2012)

Data minus Fermi diffuse emission model:

5 GeV < E < 10 GeV

10 GeV < E < 20 GeV

Su & Finkbeiner (2012)

Fermi Bubble from three year maps

The bubbles have sharp edges!

Now we can do a multilinear regression at each energy!

$$\ln \mathcal{L} = \sum_{i} k_{i} \ln \mu_{i} - \mu_{i} - \ln(k_{i}!)$$

where μ is the synthetic map (i.e., linear combination of templates) at pixel i, and k is the map of observed data. The last term is a function of only the observed maps. The 1 σ Gaussian error is calculated from the likelihood by $\Delta \ln L = 1/2$.

Su & Finkbeiner (2012)

Cooling time is short!

Su et al. (2010)

Compare with WMAP haze

This all-sky image shows the spatial distribution over the whole sky of the galactic haze at 30 and 44 GHz, extracted from the Planck observations. Credits: ESA/Planck Collaboration.

This all-sky image shows the distribution of the galactic haze seen by ESA's Planck mission at microwave frequencies superimposed over the high-energy sky, as seen by NASA's Fermi Gamma-ray Space Telescope. Credits: ESA/Planck Collaboration (microwave); NASA/DOE/ Fermi LAT/D. Finkbeiner et al.

ROSAT 1.5 keV

Sharp edge in X-ray too!

XMM-Newton observation

Jet or outflow?

Guo & Mathews (2011)

Yuan et al (2012)

Jet and Cocoon in the bubbles?

Antonuccio-Delogu & Silk (2010)

1 GeV < E < 2 GeV 2 GeV < E < 5 GeV

Su & Finkbeiner (2012)

Su & Finkbeiner (2012)

Adding cocoon and jet template

Su & Finkbeiner (2012)

Su & Finkbeiner (2012)

Radio limit on the jet feature

Fermi Smoothed maps

Gamma-ray line emission from GC

Templates for spectrum fitting

Energy spectrum of the cusp

Galactic longitude and latitude profile

Offset from the GC!

Even though the highincidence-angle photons $(\theta > 40^\circ; right)$ panels have half the exposure (9.7% vs. 19% for the left panels), they have more than half of the photons, and nearly the same TS due to lower off-line background leaking in.

15 0	23.0 - 24.6 GeV	15	24.6 - 26.3 GeV	150	26.3 - 28.1 GeV	15	28.1 - 30.1 GeV	15	30.1 - 32.2 GeV
10	Nγ= 2.53 TS= 0.56	15	Nγ= 0.00 TS= 0.00	10	Nγ= 7.65 TS= 4.45	15	Nγ= 0.00 TS= 0.00	10	Nγ= 0.00 TS= 0.00
10		10		10		10	-	10	
5	-	5		5		5		5	
-		-			4	-			
0 <u> </u> 20	0 10 0 -10 -2	0	0 10 0 -10 -2	0 20	0 10 0 -10 -2	0 2	0 10 0 -10 -2	0 202	0 10 0 -10 -20
15 [32.2 - 34.5 GeV	15	34.5 - 36.9 GeV	15	36.9 - 39.5 GeV	15	39.5 - 42.2 GeV	15	42.2 - 45.2 GeV
10	$N\gamma = 0.00 \ 1S = 0.00$	10	Νγ= 0.00 15=0.00	10	Νγ= 0.00 15=0.00	10	Νγ= 0.00 15= 0.00	10	Νγ= 2.15 15= 0.72
					-				
5		5		5		5	-	5	
0		0		0	all and a second second	0		0	Alexan
20	0 10 0 -10 -2 45.2 - 48.4 GeV	20 20	0 10 0 -10 -2 48.4 - 51.7 GeV	0 20	0 10 0 -10 -2 51.7 - 55.4 GeV	0 2	0 10 0 -10 -2 55.4 - 59.2 GeV	20 2	0 10 0 -10 -20 59.2 - 63.4 GeV
15	Nγ= 1.07 TS= 0.20	15	Nγ= 0.00 TS= 0.00	15	Nγ= 0.00 TS= 0.00	15	Nγ= 3.72 TS= 3.27	15	Nγ= 1.81 TS= 0.94
10		10		10		10		10	
5		5		5		5		5	
		0	A an a chile		ol an and and	0			
20) 10 0 -10 -2 63.4 - 67.8 GoV	20 20	0 10 0 -10 -2 67.8 - 72.6 GoV	0 20) 10 0 -10 -2 72.6 - 77.7 GoV	0 2	0 10 0 -10 -2 77.7 - 83.1 GoV	20 2	0 10 0 -10 -20 83.1 - 88.9 GoV
15	Ny= 0.37 TS= 0.04	15	Ny= 1 12 TS= 0.63	15	Nv= 1.41 TS= 0.80	15	Ny= 0.90 TS= 0.45	15	Ny= 0.00 TS= 0.00
10		10		10		10		10	
5	-	5		5		5		5	
į	հ. ռ. հ		<u>"</u> м. "ло""",		Ån		ուտ. հ.հ		M_
01 20		01 20 20	0 10 0 -10 -2	06	10 0 -10 -2	0 2		1 0 20 2	
15	88.9 - 95.1 GeV	15	Nv- 117 TS-0.88	15	Nv- 0.00 TS-0.00	15	Nv- 373 TS- 773	15	Nv= 0.00 TS= 0.00
10	11/2 0.00 102 0.00	10	NI= 1.17 TO= 0.00	10	111- 0.00 10-0.00	10		10	
5	-	5		5		5	.0	5	
			l		ا م. مالم محاطم				
20	10 0 -10 -2 1247 - 1334 GeV	20 20	0 10 0 -10 -2 1334 - 1428 GeV	0 20	0 10 0 -10 -2 1428 - 1528 GeV	0 2	0 10 0 -10 -2 152.8 - 163.5 GeV	20 2	0 10 0 -10 -20 163.5 - 174.9 GeV
15	Ny- 10.31 TS-32.66	15	Ny- 0.83 TS- 0.58	15	Nv- 0.00 TS-0.00	15	Ny- 0.00 TS- 0.00	15	Ny- 0.00 TS-0.00
10	10.01 10-02.00	10	11 0.00 10 0.00	10	111- 0.00 10-0.00	10		10	
Ę				ļ		_		_	
5		Э		C		C		C	
0 h 20	<u>וויייעליאבעליאביי</u> 10 0 -10 -2	0	ר יייירעריירעריירעריירעריירעריירעריירער	020	0 10 0 -10 -2	0 2	0 10 0 -10 -2	0202	0 10 0 -10 -20

Assessment of line profile

• The 129 GeV feature shape is strikingly similar to that expected for a line. The 111 GeV feature is unconvincing, but is also compatible with a line.

• In some cases, fluctuations appear, but are not present in both low and high incidence spectra.

• This test did not have to succeed. The fact that the highincidence photon sample has sharper spectral features is important.

The detection significance of the gammaray cusp for various models

Models	Before trials	After trials (one line)	Trials factor (one line)
Gaussian (centered)	5.0σ	3.7σ	300
Gaussian (off center, $\theta > 40^{\circ}$)	5.5σ	3.7σ	6000
unbinned ℓ	5.2σ	3.2σ	6000
unbinned $\ell \ (\theta > 40^{\circ})$	4.9σ	2.8σ	6000
unbinned b	4.8σ	3.5σ	300
unbinned $b \ (\theta > 40^{\circ})$	4.6σ	3.2σ	300
NFW $\alpha = 1.0$ (off center)	6.1σ	4.5σ	6000
NFW $\alpha = 1.2$ (off center)	6.5σ	5.0σ	6000
NFW $\alpha = 1.3$ (off center)	6.0σ	4.4σ	6000
NFW $\alpha = 1.4$ (off center)	5.6σ	3.8σ	6000
NFW $\alpha = 1.5$ (off center)	5.2σ	3.2σ	6000
Einasto (off center)	6.6σ	5.1σ	6000

Two lines model

Models	After trials (two line)	Trials factor (two line)
Gaussian (centered)	4.3σ	36
Gaussian (off center, $\theta > 40^{\circ}$)	4.2σ	720
NFW $\alpha = 1.0$ (off center)	4.9σ	720
NFW $\alpha = 1.2$ (off center)	5.4σ	720
NFW $\alpha = 1.3$ (off center)	4.8σ	720
NFW $\alpha = 1.4$ (off center)	4.3σ	720
NFW $\alpha = 1.5$ (off center)	3.8σ	720
Einasto (off center)	5.5σ	720

A MODIFIED SURVEY STRATEGY FOR FERMI

- The scan strategy of **Fermi**-LAT could be altered for 1 year to confirm the 130 GeV line!
- This current strategy is excellent for uniformity of full-sky coverage, but is far from optimal for collecting high-incidence-angle photons from the GC.
- The exposure time of our $(40^{\circ} < \theta < 60^{\circ})$ sample exceeds the current strategy (observed 9.7% of the time) by more than a factor of 4. Require GC have an incidence angle of $45^{\circ} < \theta < 55^{\circ}$.
- After 1 year of altered observing, we would have a sample of high incidence photons equal to the current sample, and could evaluate their significance directly, in the absence of any trials factor!

What has Fermi found: The LAT two-year catalog

Credit: NASA/Goddard Space Flight Center

DOUBLE GAMMA-RAY LINES FROM UNASSOCIATED FERMI-LAT SOURCES

Su & Finkbeiner (arXiv:1207.7060)

Background estimation

Su & Finkbeiner (arXiv:1207.7060)

Su & Finkbeiner (arXiv:1207.7060)

Thank You for Your Attention!

(Video credit: NASA's Goddard Space Flight Center)