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C) Transients as a physics lab

Why do we care?
e Cosmology
* Extreme gravity and states of matter
* Accretion physics

Why you should care
* Fast Radio Bursts
* IDVs & Extreme Scattering Events
/’ * Flare stars & dwarf novae
| )+ Symbiosis

How do we fit in?
e Precursor results
* Meshing with other surveys
 The Four Elements of Transients Survey Science
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Q) Scientific Motivation

* Transients probe

— high brightness temperature emission
— extreme states of matter
— physics of strong gravitational fields

— phySiCS of accretion Courtesy Jason essels

— extreme energy densities . -5 ok e Extragalactic
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@ Known Knowns & Known Unknowns
Time-domain - bursty and generally coherent

e Pulsars including Magnetar bursts, Transitional XRBs, Giant Pulses,
RRATs

e Fast Radio Bursts

e Bursty emission from exoplanet-star systems, brown
dwarfs

Image domain - incoherent synchrotron or thermal
e X-ray binaries

e [idal Disruption Events

* Novae & Flare stars

e |ntra-day variable quasars/Extreme Scattering Events
e System mergers/gravitational wave events




(@ Transients as cosmological probes

o

We can
—directly detect every single baryon along the line of sight!
— use the DM-redshift relation as a cosmic ruler

—measure turbulence on sub 108m scales at distances of ~1Gpc
—probe IGM physics: primordial magnetic field & energy deposition

see both Macquatrt et al., Fender et al. in the SKA Science book
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@ Extraordinary FRB properties

Bright Fluences up to ~10 Jy ms
— ~15 events from Parkes (Lorimer et al. 2007; Thornton et al. 2013)
— 1 at Arecibo (Spitler et al. 2014)
— 1 at Green Bank (forthcoming)

Distant Extremely high dispersion measures for objects above the Galactic plane
(375-1500 pc/cm?)

— Not obviously associated with nearby galaxies
Common Inferred event rate ~ 2-5 x103 sky-' day’

Scattered At least 4 exhibit temporal smearing of order several milliseconds (much larger
than expected due to scattering in the Milky Way)
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7 SSi ?
QJ Where are the missing baryons"

FRB dispersion can directly answer this question

* Missing baryons location an important element of galaxy
halo accretion and feedback

* Most dark matter found in galaxy halos, but most baryonic
matter outside this scale (>100kpc)

e How do we determine Its distribultion?l

= weak feedback

O = trace dark matter -
A  strong feedback
—_ McQuinn 2014
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CRA@ Evidence of FRB Cosmological Origin

Observations show there is a 4.7:1 difference in the

detection rate between high (>30 deg) and low latitude
(Petroff et al. 2014)
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Interstellar scintillation explains this dependence: also implies source
counts are non-Euclidean (dN/dSy ~ Sy2°) (Macquart & Johnston 2015)
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&) Scintillation enhanc:,ement WWWWWWWWWWWW

In the regime of strong diffractive scintillation, the . High QalaC“C
probability distribution of amplifications at high Latitude
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Q) FRB enhancement
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CRAR\ Consequences

An indirect measurement of the source count distribution!
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C) CVs are radio emitters

Survey of dwarf novae in outburst detected all 5 systems with the VLA, Sy=15-50 pJy/

beam (distances of 100-330 pc)
Undetectable in quiescence if like SS Cyg, so only detectable as transients.

Dwarf novae are numerous, nearby & non-relativistic accretion laboratories —

A new probe of the accretion/ejection connection
Comparison with neutron star and black hole systems probes how jet launching is affected by the
depth of the gravitational potential well.
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(e Night-time IPS @ 155MHz
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() Intra-Day Variability

Over 56% of all flat-spectrum cm-wavelength radio sources
exhibit IDV (Lovell et al. 2008)

PKS 0405-385 (Kedziora-Chudczer et al. 1997)

3cm

6cm

| 3cm

2lcm

Free VLBI - we will ID a large fraction of AGN automatically!

. AW
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CRAR\ Extreme Scattering Events

Occurs in 1 in 70 compact sources per year

(Fiedler et al. 1987)
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«w More results from precursors
\\'JIVIWA

« Limits on image plane event rate: 107 sg.deg.”! @ 28s cadence at 180MHz
(Rowlinson et al.)

e Discovery of intermittent IPS very far from Sun (Kaplan et al. 2015)
» |onospheric scintillation due to large organised structures (Loi et al.)
e Searches for FRBs in both image and time domains

LOFAR
« LOTAAS LOFAR Tied-array All-sky survey - 219 beams (9 sq. deg).

MeerKAT

e commensal interrogation of MeerKAT data for transients was embraced by all
Pls of the MeerKAT Large Survey Projects

ASKAP-12
VAST
CRAFT - will have ability to read out baseband buffers to search for FRBs

VLA/VLBA

Ongoing high-time resolution searches (FRBS)
V-FASTR
STRIPE-82 (Kunal Mooley et al.)
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w4 Elements of Transients Surveys
&) y
#1 Time on Sky

e output linearly proportional to time on sky

#2 Near real-time detection & localisation
e multi-A followup requires positions good enough to provide
unambiguous matches (~1” or better for extragalactic)
#3 Characterisation
 Amongst all candidates, which merit scrutiny??

* Necessary discriminators:

e Spectrum, polarisation, outburst timescale and shape,
previous behaviour at this position

#4 Followup - milking the science out of it
* Palm off to dedicated monitoring programme?

* Reschedule survey to include this position with the required
cadence”

- Chartingthe Transients Universe with Radio Surveys 18



Q) On #1

Planned vs. Opportunistic surveys
* Reasonable to expect at most 10% of the telescope to be
dedicated to transients surveys
* The future lies with the opportunistic

e 100% of the telescope time means we net:
e 10x more transients & 10x rarer events

e Altruistic: SKA transients model is to share all events with
the community

e Everybody gets our results for free
e This model is broadly embraced (e.g. SWIFT and LSST)




C) On #2 & #4

Build transients searches into the survey strategy at the
beginning

e Ensure search requirements aren’t watered down in the
inevitable rush to get the survey underway

Archive facility

e User interface iIs crucial
« c.f. the LOFAR experience

Triggers: Formulate a policy to respond to and issue Triggers
* \We can either disrupt/override telescope operations or

e ensure that the underlying survey has the flexibility to make

use out of followup time (i.e. build up sensitivity in the region
of an event)

C Craringthe Tansents Uniersowith RadioSunveys 20
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QJ On #3 (characterisation)
Respond to (and issue) triggers

e To what extent should we “respond”?

N Results
] ] . ‘ NEXT EXIT R
For real-time commensal time-domain

& image plane search
* Timely followup required to catch
events in the act
Buffer - images & voltages
* A time machine to respond to triggers Which events are the real
with some latency (e.g. from our own ~ 9ems?

detection systems) SKA will see huge numbers of

VLBI: an essential followup component transients, but need enough
information to sort the wheat

from the chaff.
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Q) Crossover with other science

Pulsars
* High time resolution

EOR
e A contaminant that needs to be removed from data

Continuum
e |DV present in >50% of all flat-spectrum AGN

Our Galaxy
 Novae, flare stars, X-ray binaries

Cosmic Rays
* All-sky at sub-ms At/Shares several technical requirements

VLBI
* An essential component of followup for some science

HI/Spectral line
e Variable HI absorption by intervening galaxies

O Sk wiiieSkA

Everybody will participate in Transients Science



@ Transients community brings friends
=

Relevance is key to us: FRI-ENPS

We must have the capacity to ‘_
link our objects to the rest of the s I . 6, L
-n‘ ' ‘_' | S “ﬁ . % : y

electromagnetic spectrum

Optical in the era of...
o LSS
e OWLs
e Desert Iransients Factory

We plug into a network of
followup facilities (MeerLicht)
JWST

ALMA

X-ray/gamma-ray

Advanced LIGO

SRS 2
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C) The

Symbiosis

Makes telescopes productive out of the blocks
e Significant discoveries while large-scale surveys are still ramping up
e Spot defects in the data that you might not otherwise know exist
* Variability can aid your science too! — IDVs for continuum science

Most Transients science is commensal
* Exceptions: particular targets, e.g. Galactic Centre

Need enough information from the telescope to make

transients science useful
* Necessitated by need to separate the wheat from the chaft

Wide FoV & sensitivity combination is already yielding great
Surprises
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@ Scintillation can explain this!

Giving FRBs a lift
Macquart & Johnston, MNRAS 2015

« Suggestion: random amplification due to turbulence
in our Galaxy “magnifies” events ordinarily too weak
to be detected

e How does this work?

— There is a characteristic bandwidth associated
with interstellar scintillation

— The stronger the scattering (i.e. the more material
the radiation propagates through), the smaller the
decorrelation bandwidth.

— Closer to the plane the scattering is stronger and the
decorrelation bandwidth at smaller.

— Enhancement can only work well above the Galactic
plane

2



o\ _ ?
Q) Steep source counts — how"

For homogeneously-distributed events in Euclidean space,
differential source counts scale as S,°%:

* With a sensitivity to events down to flux density S, we detect events
of luminosity L out to distance

L
Dmax —
\/47TSV

The number of events we detect per Sy biN IS\ per of events per

unit time per volume

3
5. = 3P4s. Diax
If the source counts deviate from S,2 either
1. non-Euclidean geometry matters (i.e. at high z) or

2. they must be distributed inhomogeneously with distance (i.e.

at high z)

2




@ Chance favours the prepared mind
N/
Most discoveries in this domain are driven by

iInnovations in technology
« High time resolution science limited by |/O capabillities
e FRBs discovery brought about by advances in compute
capacity

* Wide field of view
 Necessary to find rare events
* Dictates formidable processing power

e Radio telescopes are still behind the domain of high energy
searches
e Fermi, SWIFT, ...
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