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A bit of history

@ In 1980s, synchrotron emission from galaxies was
associated with «old stars»

* Similarity of radial profiles; diffuse shock acceleration

@ Radio thermal was thought the best measure of SFR
* Sparse data on galaxies; physics of ionized regions

@ Today, we accept synchrotron is driven by SF, with
* Longer time constant than other SF tracers
% Greater scale length (in disk) than other SF tracers

@ This was the result of radio-IR studies
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@ Galaxy-scale radio emission, relation to Star Formation

@ Galaxy-scale infrared emission, relation to SF
@ The relation of radio and infrared: beyond SF
o Testing and improving the framework

@ Open questions, opportunities
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Framework: radio emission

@ Main components of galaxy

radio emission linked to SF Wavelonoth (mm

* SN-> CRe + B-> Synchrotron Model -

* Ionizing stars + H-> —o— Plancke

X Uncertain Or‘igin—> AME T e Thermal dust ;

* Scaling relations well modeled
(e.g. Murphy 2009)

=
)
Z
w
c
@
©
>
3
L

@ Astrophysics framework has
> micro-physics =
*sys’rem PhYSiCS o0 1000

. % ime Frequency (GHz)
* enwronmen’ral modlﬂers M31: Planck Consortium 2015

@ Framework still not robust
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Framework: synchrotron emission

@ Synchrotron: Cosmic Ray electrons (CRe) and B field

* Galaxy-wide scaling of B, CRe other sources/reacceleration,
propagation & confinement, secondary CRe/CRp+... uncertain

@ Galaxy-scale phenomenology understood (Murphy+
2006, 2007; Tabatabaei+ 2007, 2013; Heesen+ 2014)

* Synchrotron spreads wider than SF sites

@ Few physical models (e.g. Volk 1989; Helou+ 1993;
Lacki+ 2010; Niklas & Beck 1997)
* Driven by relation with IR, gamma-rays

* Global galaxy properties/scaling critical: SF intensity, ISM
density, scale-height, geometry
* Open question: Are galaxies calorimeters or smart filters?
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Galaxy Synchrotron Energy Budgets
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Figure 2. Luminosity budget of the MW for DR propagation model with
zn = 4 kpc. The percentage figures are shown with respect to the total injected
luminosity in CRs, 7.9 x 10% erg s~!. The percentages in brackets show the
values relative to the luminosity of their respective lepton populations (primary
electrons, secondary electrons/positrons).

Strong+ 2010
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Figure 15. Importance of magnetic, radiation, and CR pressures compared
to the hydrostatic pressure needed to support a galactic disk. The hydrostatic
pressure needed to support the gas alone is JrGZ'.2 In low-density galaxies,

the mass of the stars lmphes that Phydro = lOnGZ' (see the discussion in
Section 5.6). The cosmic ray energy density does not increase as quickly as
radiation and magnetic field energy densities in starburst galaxies. None of the
three components provides enough pressure to support starburst galaxies.

Lacki+ 2010



Galaxy Synchrotron Energy Budgets
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Strong+ 20 Models differ significantly, driven by input data from radio, 1 discusionin
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Framework: infrared emission (1)

TN N
@ IR(A) = [Tism] -Heating())

@ Heating()) is the input heating spectrum from all stars
(neglecting AGN)

@ IR()) is the Infrared SED, i.e. Dust Cooling
* allow for escaping starlight; ignore gas cooling

@ T is a matrix with all the coupling terms between
Heating and Cooling
* Cross-sections, opacities, etc

¥ Geometry(local, initial), geometry(age), geometry(d/g),
geometry(morphology), etc
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Framework: infrared emission (2)

RN S
@ IR(\) = [Tism]-Heating(A) — simplifications:

@ Most drastic approximation is "L(IR) = k-SFR”

@ More useful for extracting information:

* Heating = 2 TUV(>13.6eV )+FUV(>6eV )+NUV+Vis+NIR
@ 2 is taken over stars in various age groups

* IR(A) = 3 SED(dust species, U range, 1)
@ Dust {VSG, Aromatics, LG} at U=0.1--10°Gq

* [T1sm] links star populations to dust emission via ISM phases

@ Biggest challenge is geometry, but galaxy size helps!
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@ Galaxy-scale radio emission, relation to Star Formation

@ Galaxy-scale infrared emission, relation to SF
@ The relation of radio and infrared: beyond SF
o Testing and improving the framework

@ Open questions, opportunities
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Framework: radio-infrared relation 1

@ Strong linear relation radio-IR
in spite of complexity in each,
great variation in galaxy ISM
properties, SFR, geomeftry, etc

@ Note: Luminosity range maps
into ranges of SF intensity, ISM
gas density, ISRF intensity, B; ,
mapping is NOT 1-to-1 — \ T

log L‘GOum( LO)

n of g-values plotted as a function of IRAS 60 ym
ne marks the average value of g = 2.34, while the
1¢ “radio-excess ” (below) and “ IR-excess” (above)
aving 5 times larger radio and IR flux density than
1 the linear radio-FIR relation, respectively.

e.g. Yun+ 2001
e.g. Helou+ 1985
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Calorimeters or smart filters? (1)

@ This is about “system physics”: A universal ratio
(common origin) of CR and UV/Vis photons does not
guarantee constant IR/radio, even in calorimeter case
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Figure 1. Non-thermal FRC, as reproduced in our standard model (p = 2.3,

\ f=15a=0.728=35,§& = 0.023). While low CR escape times and low UV
Helou"BOlogna Radio Su optical depth on their own would break the correlation at low surface densities
the two effects cancel each other out, creating a largely line Lacki+ 2010




Calorimeters or smart filters? (2)

@ This is also about what “micro-physics” and what
associated parameters are assumed
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Figure 9. High-Z, conspiracy in our standard model (p = 2.3, f = L5,
a = 07,8 = 48, &£ = 0.023). The simple calorimeter model has perfect
UV calorimetry and electron calorimetry, with only synchrotron cooling and
no secondaries. Non-synchrotron cooling and secondaries 2'ana 2025 2000000
broken FIR-radio correlation, but conspire to make it lineal Lacki+ 2010
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@ Galaxy-scale radio emission, relation to Star Formation

@ Galaxy-scale infrared emission, relation to SF
@ The relation of radio and infrared: beyond SF
o Testing and improving the framework

@ Open questions, opportunities
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The framework to higher redshift

@ Predictions focus on radio fading at increasing z and
on g(high-z) as test of models
* Fading because of IC losses by CRe against CMB photons
x Dependence on z of ISM/SFR parameters and relations
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Figure 5. Expected rest-frame IR /radio ratios for a galaxy having gir = 2.64 at 5
z = 0 as IC losses off of the CMB become increasingly important as a function
of redshift. Each track corresponds to a different internal magnetic field strength { Jdo
for the galaxy. As Ucms > Up, the IR /radio ratio approaches the limit where 3 -
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8 .
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The framework to higher redshift

@ Predictions focus on radio fading at increasing z and
on g(high-z) as test of models
* Fading because of IC losses by CRe against CMB photons
x Dependence on z of ISM/SFR parameters and relations

@ Differences reflect model complexity, CRe loss
channels, assumptions on galaxy properties, e.g.

compactness vs luminosity
Murphy 2009
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Figure 5. Expected rest-frame IR /radio ratios for a galaxy having gir = 2.64 at
z = 0 as IC losses off of the CMB become increasingly important as a function
of redshift. Each track corresponds to a different internal magnetic field strength A
for the galaxy. As Ucmp > U, the IR /radio ratio approaches the limit where Helou-Bolog na Rad|o Surveys 201 >
only thermal (free—free) radiation contributes to the observed radio continuum
emission. The average local gig values (2.64 dex; dot-dashed line) and the +1o
scatter (dotted-line) are shown.




The framework to higher redshift

@ Predictions focus on radio fading at increasing z and
on g(high-z) as test of models
* Fading because of IC losses by CRe against CMB photons
x Dependence on z of ISM/SFR parameters and relations
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The Data at higher redshift

@ Out to z»2-3 g=IR/radio appears unchanged, or

decreasing(?)

@ Sparse dafa, analysis biases
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Figure 4. Redshift evolution of the median logarithmic TIR /radio ratio (gTr)

for IR-bright galaxies (Ltr > Lii%"; green symbols) and ULIRGs (red). In
the upper panel, we consider the subset of SF sources, extracted from the
entire sample of active galaxies (bottom). Transparent symbols: estimates of
(gTIr) prior to correction for selection biases (see Section 3). The best-fitting
evolutionary trends to the corrected (uncorrected) measurements of {grr) are
reported using strong (transparent) dashed lines. They have been additionally
constrained (open stars) at low redshift by the sample of Yun et al. (2001). Both
ULIRGs and IR-bright galaxies have constant average IR /radio properties out

to z ~ 2 when correcting for bias, otherwise ~(.3 dex of nasitive avalution ic

found. Sargent+ 2010



The Data at higher redshift

@ Out to z=2-3, g=IR/radio appears unchanged, or
decreasing(?)

@ Sparse dafa, analysis biases

star forming sources
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Other effects at high redshift?

@ SFR co-moving density, radiation increases with z
% Concomitant increase in intergalactic CR is very likely

@ Galaxies will capture some of these CR, adding to

synchrotron emission
% Captured IG CR diffuse much more slowly inside galaxies
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— S1-Xu et al. (2003)
--- Lagache et al. (2004)
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Other effects at high redshift?

@ SFR co-moving density, radiation increases with z
% Concomitant increase in intergalactic CR is very likely

@ Galaxies will capture some of these CR, adding to

synchrotron emission
% Captured IG CR diffuse much more slowly inside galaxies

@ Early rise of AGN would start the IG CR early
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Other effects at high redshift?

@ SFR co-moving density, radiation increases with z
% Concomitant increase in intergalactic CR is very likely

@ Galaxies will capture some of these CR, adding to

synchrotron emission
% Captured IG CR diffuse much more slowly inside galaxies

@ Early rise of AGN would start the IG CR early

age of the universe (Gyr)
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Assuming UIGCR)~U(CIB), IGCR ﬂux onto MW today
is comparable to SN-derived CR source rate.
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The framework to extremes

@ QOutlier objects in correlations hold useful clues
* Are all radio-loud galaxies AGN?

% Radio-quiet galaxies still not fully understood (Roussel+
2003, 2006): Nascent starbursts or something else?

@ ~17 populations valuable |G- Roussel 2006

* Hide easily in surveys # synchrotron deficient by > 370%
* free-free deficient by > 85%
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@ Galaxy-scale radio emission, relation to Star Formation

@ Galaxy-scale infrared emission, relation to SF
@ The relation of radio and infrared: beyond SF
o Testing and improving the framework

@ Open questions, opportunities
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Questions on physics, other agents

@ Understanding dynamics between U(CR), U(B), U(gas),
U(ISRF), and possibly other Us

@ Understanding magnetic field, its scalings, geometry

@ Understanding CR confinement, other behavior
* Deftailed simulations may be needed, e.g. Hardsastle 2013

® What role for infergalactic CR?

@ Wild card: AME
* Spinning PAH hypothesis is in difficulty
* AME close in energy importance to synchrotron!
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Correlation of AME with 7353 and radiance R

Expectation: spinning dust rotational emission o< 7353
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Does AME Come from Spinning PAHs?

(Hensley et al. 2015)
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Parting Thought

@ “Astronomy is data-driven” - Roger Blandford
* Radio astronomy is no exception
* “Theory a mnemonic device” — Martin Schwarzschild (attr.)

@ This is the best argument for surveying the sky with
powerful new instruments such as SKA or precursors!
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