A SEARCH FOR MAGNETIC FIELDS AROUND DISK-LIKE GALAXIES AT Z~0.5

Anna Williams PhD Candidate at University of Wisconsin-Madison

Thesis Advisors: Dr. Eric Wilcots (UW-Madison), Dr. Ellen Zweibel (UW-Madison) Collaborators: Dr. S.A. Mao (MPIfR), Dr. Britt Lundgren (AAAS), Dr. Don York (U. Chicago)

They are

everywhere!

Krause+2012

Outstanding Questions

Origin

- How and when did the first magnetic fields form in the universe?
- Growth and amplification
 - How do the strength and structure of magnetic fields evolve with redshift?
- Dynamics
 - (How) Do magnetic fields affect astrophysical processes that in turn define the evolution of galaxies?
- Beyond galaxies
 - Are there magnetic fields in the IGM? If so, how did they get there and what are their strengths?

Observing Magnetic Fields

- Synchrotron emission
 - B in plane of sky, radio
- Polarized dust emission
 - B in plane of sky, IR and submm
- Zeeman Effect
 - B along line of sight, radio and submm
- Faraday Effect
 - B along line of sight, radio

 $\phi(r) = 0.81 \int_{there}^{here} n_e \vec{B} \cdot d\vec{r}$

n_e

 $n_e = cm^{-3}$, **B**= μ G, **dr**=parsec

 $(rad m^{-2})$

Simplest case: $\phi = RM = \Delta \chi / \Delta \lambda^2$

Faraday Rotation

$$\phi(r) = 0.81 \int_{there}^{here} n_e(z) B_{\parallel}(z) \frac{1}{(1+z)^2} \frac{dl}{dz} dz$$

Observer in Milky Way Magnetized stuff in between

Source of linearly polarized emission

How to study RM in distant galaxies

- Theories predicted
- (e.g., Parker 1979)
 - μ G strength fields to be a relatively recent phenomenon
 - Galactic magnetic fields would be substantially weaker at z~2.0
 - Should see change in RM as function of redshift

How to study RM in distant galaxies

- Theories predicted
 (e.g., Parker 1979)
 - μ G strength fields to be a relatively recent phenomenon
 - Galactic magnetic fields would be substantially weaker at z~2.0
 - Should see change in RM as function of redshift

$$\phi(r) = 0.81 \int_{there}^{here} n_e(z) B_{\parallel}(z) \frac{1}{(1+z)^2} \frac{dl}{dz} dz$$

Control:

 $RM_{Obs.} = RM_{MW} + RM_{IGM} + RM_{QSO} + \sigma$

How to study RM in distant galaxies

- Theories predicted
 (e.g., Parker 1979)
 - μ G strength fields to be a relatively recent phenomenon
 - Galactic magnetic fields would be substantially weaker at z~2.0
 - Should see change in RM as function of redshift
- Observational RM experiments were designed with control and target samples (e.g., Oren & Wolfe 1995, Bernet +2010)

$$\phi(r) = 0.81 \int_{there}^{here} n_e(z) B_{\parallel}(z) \frac{1}{(1+z)^2} \frac{dl}{dz} dz$$

 $RM_{Ohs} = RM_{MW} + RM_{IGM} + RM_{OSO} + \sigma$

Control:

Target: $RM_{Obs.} = RM_{MW} + RM_{INT} + RM_{IGM} + RM_{QSO} + \sigma$

Recent Work:

Bernet +2010 268 QSOs (from Kronberg+2008)

Fig. 8: Distributions of QSOs split into two redshift bins. All observed QSOs (left), QSOs without strong MgII absorption (right).

Recent Work:

Bernet +2010 268 QSOs (from Kronberg+2008)

Fig. 8: Distributions of QSOs split into two redshift bins. All observed QSOs (left), QSOs without strong MgII absorption (right).

Bernet +2013

parameter of MgII absorber

Infer B~I0uG

Supports FIR-radio correlation and magnetized outflows

Recent Work: Farnes+2014

- 599 MgII absorption systems with polarized background radio sources (cross-matched Farnes+2014 radio catalog with Zhu&Menard 2013 MgII catalog)
- Looked at spectral index of absorbers
 - Difference between steep ($\alpha \leq -0.7$) and flat spectrum ($\alpha \geq -0.3$) radio sources
 - Flat spectrum (core) sources probe same region at optical
- Detect RM contribution of 24rad/m² (k-corrected) due to MgII absorbers in flat spectrum sources \rightarrow 1.8±0.4uG

Why MgII absorbers?

- Traces HI
 - 10¹⁸ < N(HI) cm⁻² < 10²² (e.g., Rao+2006), T~10⁴ K (e.g., Charlton+2003)
- Photo-ionized gas clouds associated with galaxies: disks, halos, HVCs, dwarf galaxies, or galactic outflows
- Probe conditions in and around evolving galaxies

What are the magnetic field properties in these environments?

Lundgren +2012 DEIMOS spectra of high-z QSO with MgII absorption systems

Our VLA Study: Building off these results

Idea:

- I) Find QSOs with single, strong MgII absorption in SDSS
- 2) Check list of objects against previous radio surveys (NVSS and FIRST)
- 3) Build control sample, radio sources without strong absorption features
- 4) Observe with VLA!

VLA Observations taken during 2014 & 2015

- 38 QSO sightlines with single MgII absorption feature AND photometric detection for absorber!
 - Within 70kpc of QSO
 - 0.38 < z_{MgII} < 0.65
 - 0.65 < z_{QSO} < 1.9
- I 12 Control sightlines with roughly same distribution in RA and redshift
- S-band (2-4GHz)
 - Mitigate depolarization
 - Broadband for RM synthesis & Q-, U-fitting
- VLA A- & BnA- Configurations
 - Resolve our radio sources!

SDSS Image of one target

Primary beam ~15' Pixels are 0.2'' 20uJy rms

54'

J2000 Right Ascension

Obj	SDSS z	α	Pol.	Pol. S/N	% Pol	RM_{obs}	NVSS Pol.	NVSS % Pol	NVSS RM _{obs}
			(mJy/ beam)			(rad/ m²)	(mJy/ beam)		(rad/ m²)
00a	١.5	-0.98	0.88	49	19.5%	+33 ±2.5	3.88 ±0.24	4.01%	+44.1 ±13.1
00b	١.5	-0.82	0.36	20	12.2%	+30 ±5.5	3.88 ±0.24	4.01%	+44.1 ±13.1
00c	1.5	-1.05	0.19	10	19.5%	+40 ±10.6	3.88 ±0.24	4.01%	+44.1 ±13.1
01	0.678 (?)	-1.12	0.12	6.8	0.6%	+ 4 ± 6.3	-	-	-
02	(?)	+0.13	0.12	6.7	1.0%	+7 ±16.5	-	-	-
03	0.317	-0.64	0.08	4.6	6.3%	+44 ±25.0	-	-	-

RMS~20uJy

Obj

00a

00b

00c

01

02

03

	00a	00b (00c	00a		00b 00c	0	0a	00b 00c	
S-band Pol				SDSS r			has Burns a	S-band <i>a</i>		
Obj	SDSS z	α	Pol.	Pol. S/N	% Pol	RM _{obs} _	NVSS Pol.	NVSS % Pol	NVSS RM _{obs}	
			(mJy/ beam)			(rad/ m ²)	(mJy/ beam)		(rad/ m ²)	
00a	1.5	-0.98	0.88	49	19.5%	+33 ±2.5	3.88 ±0.24	4.01%	+44.1 ±13.1	
00Ь	1.5	-0.82	0.36	20	12.2%	+30 ±5.5	3.88 ±0.24	4.01%	+44.1 ±13.1	
00c	1.5	-1.05	0.19	10	19.5%	+40 ±10.6	3.88 ±0.24	4.01%	+44.1 ±13.1	
01	0.678 (?)	-1.12	0.12	6.8	0.6%	+ 4 ± 6.3	-	-	-	
02	(?)	+0.13	0.12	6.7	1.0%	+7 ±16.5	-	-	-	
03	0.317	-0.64	0.08	4.6	6.3%	+44 ±25.0	-	-	-	

RMS~20uJy

Teaser of what is to come

Example target QSOs ←RM~21.1 rad/m² RM~4.2 rad/m² →

← Target QSO Field AGN→

Summary

Current best estimates for magnetic fields in and around young, disk-like galaxies is 1.8±0.4um (Farnes + 2014) using a broadly sampled data set (599 QSOs with $N_{MgII} \ge 1, z(MgII)_{median} \sim 0.8$)

Our Study	Observations	Goals
+38 MgII absorbers (W≥0.3Å, z _{MgII} ~0.5),	+S-band (2-4GHz)	+Determine RMs, compare target vs. control samples
+112 Control (similar z _{QSO} as MgII sample)	+VLA A, BnA configurations (1-2" resolution)	+RM vs Impact Parameter +RM vs MgII Eq. width (VV) +RM vs z _{MgII} +RM vs other photometric properties

+This is still small-scale, future surveys will improve statistics for sample comparison and our understanding of foreground (Milky Way) effects

+Wideband observations are vital for us to understand source of polarization and magnetic field structure

Remaining challenges:

RM_{MW} estimates, k-corrections, understanding polarized beam-shape, managing and accessing data locally...

Thank you!