VERY LARGE ARRAY SKY SURVEY

Eric J. Murphy, Caltech/IPAC

Galactic Center (Survey) Multiwavelength Image Credit: X-ray: NASA/UMass/D.Wang et al., Radio: N RAO/AUI/NSF/NRL/N.Kassim, Mid-Infrared: MSX

0000

VLA SKY SURVEY

The Karl G. Jansky Very Large Array

Reconfigurable array located in central New Mexico

- 27x25m antennas in the shape of a Y, can be in one of four configurations, D (most compact, $B_{max} \sim I \text{ km}$) to A (most extended, $B_{max} \sim 36 \text{ km}$)
- Collecting area equivalent to a 130m aperture
- Field of view 45'/v(GHz)
- Frequency range 350 MHz to 50 GHz
- Spatial resolution as high as 40mas (depends on ν and array configuration)

VLA SKY SURVEY

Surveys and the VLA

Why revisit this now?

- Science based on surveys comprise a steadily increasing fraction of VLA publications
- 20 years since NVSS and FIRST!
- New capabilities on the VLA

- OTF mosaics, wide fractional bandwidths for increased continuum sensitivity, instantaneous spectral index determination, polarization
- New survey instruments being specifically designed for all-sky coverage, need radio counterpart with comparable resolution
- New scientific opportunities, especially in time domain

The VLA Sky Survey (VLASS) initiative

- In July 2013 NRAO announced that it would consider a new radio sky survey using the Karl G. Jansky VLA
 - <u>https://science.nrao.edu/science/surveys/vlass</u>
- Science and survey definition led by the community
- Open international participation, public data and products
- Fall 2013 call for White Papers on technical aspects and science goals issued: 22 received, 180 unique authors
- Well-attended AAS workshop, January 2014
- 2014: Survey Science Group (SSG), working groups formed
 - survey proposal developed, drafts posted, comments, refined
 - technical implementation plan

Science Survey Group (SSG)

- Co-Chairs: Eric Murphy (IPAC) & Stefi Baum (RIT, U. Manitoba)
- Working Group Co-Chairs:
 - Programmatic: Jim Condon (NRAO), Rick White (STScI)
 - Extragalactic: Gordon Richards (Drexel), Jackie Hodge (NRAO)
 - Galactic*: Rachel Osten (STScI), Joe Lazio (JPL), Cornelia Lang(U Iowa)
 - Transients: Gregg Hallinan (Caltech), Ashley Zauderer (CfA)
 - Technical: Casey Law (UC Berkeley), Steve Myers (NRAO)
 - Outreach: Susana Deustua (STScI), Nicole Gugliucci (SIUE/CosmoQuest)
- At-Large Councilors:
 - Niel Brandt (Penn State), Jim Cordes (Cornell), Mark Dickinson (NOAO), Tracey Clarke (NRL), Sui Ann Mao (MPIA), Michael Strauss (Princeton)
- A few notable non-SSG heavy hitters include:
 - Michael Brown, Shami Chatterjee, Laura Chomiuk, Ian Heywood, Matt Jarvis, Mark Lacy, Tom Maccarone, Betsy Mills, Kunal Mooley, Larry Rudnick, Greg Sivakoff, Lorant Sjouwerman, Russ Taylor

A Significant Community Effort

VLASS Headline Science Themes

• Imaging Galaxies Through Time and Space: (talk by Lacy)

Following the Ecology of Galaxies, Star Formation, and their Black Hole Engines.

Radio Sources as Cosmological Probes: (talk by Jarvis)

Tracing the Underlying Dark Matter Density Field.

<u>Hidden Explosions</u>: (talk by Hallinan)

Unbiased Measurements of Energetic Events.

Faraday Tomography of the Magnetic Sky: (talk by Rudnick)

Charting the Emergence of Large-Scale Magnetic Fields in Galaxies

Peering Through Our Dusty Galaxy: (talk by Chatterjee)

Finding and Studying Active Stars and Stellar Remnants.

Missing Physics: (talk by White)

Enabling the Incorporation of Radio Astrophysics in Multi-Wavelength Astronomy.

** Presentations from review available online

VLASS Milestones to Date

Date	Activity
2013 September	Call for White Papers
2014 January	VLASS Planning Workshop at AAS
2014 February	SSG convened
2014 March – June	SSG finalizes science definition
2014 October 15	Proposal submitted for internal review
2014 Oct. 15 – Dec. I	NRAO Internal Review
2015 January 15	Final proposal posted for community comment
2015 February 15	Community commenting closed (for Community Review)
2015 March 4 – 6	External Community Review (Socorro)

https://science.nrao.edu/science/surveys/vlass/timeline-structure

VLASS: Survey Definition

- Comprehensive multi-use legacy survey.
 - Enables wide ranging studies (multi-wavelength, statistical, time domain)
- > All in S-Band (2 4 GHz), B/BnA-configurations
 - Full Polarization Improved RM Synthesis Imaging over L-band
 - Less stringent dynamic range requirements than L-band
 - High Angular Resolution Imaging (2.5")
 - Synoptic 3 epochs, 120mJy/beam per epoch, 32 month cadence
- SKA 1.4 GHz Pathfinder Surveys Considered
 - Complements: ASKAP/EMU, APERTIF/WODAN, MeerKAT/MIGHTEE
 - Sensitive to same population of sources
 - Frequency better suited for explosive event timescales
 - Unique depolarization space
- ~5400hr investment over ~7yr (~15% impact on PI time)

	Area (deg²)	Resolution (")	Rms (μJy/bm)	Time (hr)	Epochs
All-Sky	33,885 (δ > -40°)	2.5	69	5436	3

All-Sky comparisons (past)

Parameter	VLASS – ALL SKY	VLA – NVSS	VLA – FIRST
Frequency (MHz)	2000 - 4000	1365, 1435	1365, 1435
Bandwidth (MHz)	2000	84 (2x42)	42 (2x21)
Area (sr)	3.3π	3.3π	π
rms (µJy bm ⁻¹ / K) +	69 / 1.5	260 / 0.018	88 / 0.41
Resolution (")	2.5	45	5.4
Source Density (deg ⁻²)	~280	~60	~100
Total Sources (10 ⁶)	~10	~2	~1
Start Date	May 2016	complete	complete

+ rms values scaled to 3GHz assuming $S_v \sim v^{\alpha}$ where $\alpha = -0.7$

All-Sky comparisons (future)

Parameter	VLASS – ALL SKY	ASKAP/EMU	Apertif/WO DAN	LOFAR "Tier 1"
Frequency (MHz)	2000 - 4000	1130 – 1430	1130 – 1430	120 – 180
Bandwidth (MHz)	2000	300	300	50
Area (sr)	3.3π	3π	π	2π
rms (µJy bm⁻¹ / K) +	69 / 1.5	12 / 0.016*	12 / 0.008	12 / 0.039
Resolution (")	2.5	10	14	6.5
Source Density (deg-2)	~280	~1460	~1480	~1360
Total Sources (10 ⁶)	~10	~45	~15	~28
Start Date	May 2016	2016?	July 2016	ongoing

+ rms values scaled to 3GHz assuming $S_v \sim v^{\alpha}$ where $\alpha = -0.7$

 * Given current PAF performance and number of antennas expected, we assume 20 $\mu Jy~bm^{-1}$ is more realistic than the goal 10 $\mu Jy~bm^{-1}$

Qualitative Improvements with VLASS (combination of: v, Δv , θ_s) Key Science Goals Require Resolution

- Transients Cadence and Frequency better suited for identifying cosmic explosions + Resolution to localize events (nuclei vs. disk events) + Bandwidth for characterization
- Polarization Unique depolarization space + high Resolution allowing for RM *mapping* (ground-breaking).
- Exotic Pulsars Resolution + Bandwidth allow for efficient identification.

Un-obscured view of cosmic explosions

• VLASS will be the first synoptic radio survey to detect large samples of explosive transients

Examples:

- AGN and Microquasar jets
- Supernovae & GRBs afterglows
- Black hole tidal disruption events (TDEs)
- Giant flares from magnetars
- Localize events in galaxies (disk vs. nuc.)
- Maximize detection rate at S-band
- Measure true rate and energetics without having to assume beaming fractions
 - Obscured supernovae in dusty environments
 - GRB orphan afterglows
 - Binary neutron star mergers

BNS-mergers in the Gravitational Wave Era

- Advanced LIGO (aLIGO) and Advanced Virgo (AdV) coming online
- Binary neutron star (BNS) coalescence the most likely source detected
- Associated γ-ray burst is highly beamed true rate poorly constrained
- Radio afterglows are isotropic detectable with the VLA (Nakar & Piran 2011)
- VLASS will provide an unbiased measure of the BNS-merger rate

Probe depolarized population

Only ~3% sources polarized – why ?

Physical Depolarization

- First ~arc-second all-sky polarization survey
- High freq.+ res. → depolarization effects dramatically reduced
- S-band optimal for physical depolarization (Faraday dispersion) of 50-100 rad/m² (Arshakian & Beck 2011)

Produce Faraday maps

(A2256 Source A, Rudnick, Owen Eilek, 2015)

Faraday Transfer Function RFI-free 2-4 GHz Resolution= 200/[2*S/N] rad/m² 3.8" resolution

With NVSS 45", all unresolved.

GOODS N, 1.4 GHz, 1.6" resolution 10 of 14 polarized sources resolved Median size ~20" Rudnick & Owen 2014

Efficient Identification of Exotic Radio Pulsars

- Identify candidate radio pulsars as compact, steep spectrum sources.
 - Multi-wavelength source matching to eliminate majority of sources.
 - Follow up selected candidates with deep time domain observations.
- <u>Complements</u> traditional time-domain search (periodicity and pulse dispersion).
 - Robust against time-domain RFI.
 - Very different selection effects.

Highlights:

- Ultra-compact binaries (NS-NS, NS-BH): test theories of gravity.
- Ultra-fast pulsars (sub-ms): equation of state for ultra-dense matter.
- Intermittent objects: transient emission.
- = <u>Significant biases</u> against these objects in traditional time-domain surveys.

VLASS Basic Data Products (To be hosted by NRAO)

Туре	Description	Size	Notes
Visibilities	Immediate	489 TB	Raw data and calibration products.
	Quick-Look	29 TB	Stokes I and uncertainty.
Images	Single-epoch	101 TB	7 images covering Stokes I,Q,U, α_{I} , and uncertainties.
-	Cumulative	48 TB	As above + curv _I , tapered images $(1/3 \text{ nominal resolution})$.
	Coarse	101 TB	Source cutouts: 5 images (I,Q,U and uncertainties) for 14 \times
Image Cubes	single-epoch		128 MHz bands. Only 10% of sky ($\sim 10^6$ sources).
-	Coarse	37 TB	As for single-epoch coarse cubes, plus a tapered set of images.
	cumulative		
	Fine	119 TB	As for cumulative coarse cubes, but for 179×10 MHz chan-
	cumulative		nels and cut outs for 2.5% of whole sky.
Catalogs	Single-epoch	Small	Location, shape, brightness, spectral index, and polarization.
	Cumulative	Small	As for single-epoch case.

Enhanced Data Products/Services Requires a community led effort!

Activity	Description	Notes		
	Identify objects	Gathering raw output of source detection into associations		
Catalogs (MA: A)		("sources") with classifications.		
	Polarimetry	Cataloging polarimetric information (RM, $\sigma_{\rm RM}$) for multiple		
		components and assembled sources.		
	Transients	Robust, rapid transient identification in quick-look data.		
Transients (MA: B&C)	Alerts	Rapid announcement of transients, initial classification.		
	Fast transients	Time cut-outs of visibility data for sub-second transients.		
Polarimetry (MA: D)	Faraday cubes	Cut-out cubes of complex spectrum with $\delta RM = 10$ rad m ⁻² .		
Archiving (MA: E)	Data hosting	Single-epoch images, cumulative images, spectral cubes.		
	Data services	Querying, band-merging, associating.		
	Citizen Science	Radio Galaxy Zoo and more.		

VLASS Legacy Archive

♦ To be hosted by *IPAC/IRSA*

VLASS data will to be integrated with, e.g., *Spitzerl, Planck*, WISE. Euclid, PTF+ZTF, etc...

♦ Enhanced data products
lead to heavy community
usage: >50% of all Spitzer
publications make use of
Legacy Program Products

133.919035

58.714185

08h55m40.57s

8d42m51.07

0.0898

9.213e-01

VLASS Future Milestones Notional schedule (as of October 2015)

Date	Activity
2015 March 4–6	External Community Review (Socorro)
2015 March – 2015 Oct	Set up Project Office, draft workplan, allocate resources
2015 March – 2016 May	Test & Development Program carried out
2016 January	VLASS Preliminary Design Review (PDR)
2016 May 27	Start of 2016A B-config (VLASS pilot observations possible)
2016 June	VLASS Critical Design Review (CDR), final go/no-go
2016 Aug 29	End of 2016A B-config (nominal, without VLASS)
2016 Oct 3	End of 2016A B-config (with a 1 month extension for VLASS)
2017 Apr 3	Delivery of B-config Epoch I (6 months: ALL-SKY Stokes I only)
2017 Oct 3	Delivery of B-config Epoch I (12 months: Pol.)
2017 Sep	VLASS Cycle 2 observations commence (B-config)

VLASS: Take away message

- A new era of both deep field and wide-area multi-wavelength synoptic surveys is about to begin!
 - Enter VLASS: A multi-use public legacy survey
- VLASS will support a broad community & enable wide range of science and discovery
 - Concentrating on capabilities that are complimentary (e.g., not achievable) by SKA pathfinder surveys
 - Hidden explosions, Faraday Tomography, Galaxies & AGN Everywhere
- VLASS builds on the past, and looks towards the future
 - Snapshots of our Universe unique in time & space!
 - A springboard into the LSST and SKA science era
 - A substantial real world test-bed for SKA science and processing

