NON THERMAL PHENOMENA IN GALAXY CLUSTERS: OPEN QUESTIONS & FUTURE PERSPECTIVES Seeing beyond the tip of the iceberg

> now

"THE MANY FACETS OF EXTRAGALACTIC RADIO SURVEYS: TOWARDS NEW SCIENTIFIC CHALLENGES"

Bologna, 20-23 October 2015

Rossella Cassano Northing Chipping INAF-ORA, Bologna, ITALY

Outline of the talk

Setting the scene

✓ a multi-wavelength view of Galaxy Clusters —

Radio Halos and Radio Relics

Cluster formation (mergers) —> generation of NT-components

Origin of cluster-scale diffuse synchrotron radio emissions

 \checkmark basic theoretical models and open problems

Focus on giant Radio Halos

✓ Statistical models and expectations for future radio surveys with LOFAR, ASKAP, MeerKAT ... SKA

A multi-wavelength view of galaxy clusters

L~2-3 Mpc, $M \sim 10^{15} M_{\odot}$

✓ Made of : 70-80% of dark-matter few % galaxies and 15-20% intra-cluster medium (ICM)

Giant Radio Halos

Diffuse synchrotron radiation from the ICM of merging clusters => GeV relativistic e⁻ and μ G magnetic fields on Mpc-scale (e.g.; Ferrari et al. 08; Feretti et al. 12;

Brunetti & Jones 2014, for a review)

Fundamental questions...

> ORIGIN ??

> IMPACT on thermal ICM ?? (microphysics & dynamics)

✓ Steep spectrum sources (a~1.2-1.4, f(v)~v⁻a)

✓ Low surface radio brightness

Radio Halos

Unpolarised, follow the X-ray brightness

(originate from cluster central regions)

Radio Relics

Polarised, no correlation with X-ray brightness

(form cluster outskirts)

Observational Milestones: RH & cluster mergers

✓ The synchrotron power of radio halos ($P_{1,4}$) increases with the cluster mass L_X , T_X , Y_{SZ} ; e.g.; Colafrancesco 99; Liang et al 00, Feretti 00, 03; Ensslin & Röttgering 02; Cassano et al. 06, 13; Brunetti et al. 09; Giovannini et al. 09, Basu 12)

✓ RHs <u>are always found in merging clusters</u> while clusters without RH are more "relaxed" (*Brunetti et al.07, Venturi et al. 07, 08; Cassano et al. 10, 13; Cuciti et al. 15*)

the generation of RHs is linked to the process of formation (mass growth) of galaxy clusters

How galaxy clusters form?

Galaxy clusters form via a hierarchical sequence of mergers and accretion of smaller systems driven by DM

Merger Energy \approx

 $\frac{GM_1M_2}{R} \simeq 4 \times 10^{64} \left(\frac{M_{1\,2}}{10^{15}M_{\odot}}\right)^2 \times \left(\frac{2Mpc}{R}\right) erg$

 \checkmark Mergers dissipate up to $10^{63}\text{--}10^{64}$ ergs during one cluster crossing time (~1 Gyr)

 \checkmark This huge energy is primarily dissipated at shocks into heating of the gas, but also through large-scale ICM motions

✓ A fraction of this energy can be channelled into NT plasma components: relativistic particles and magnetic fields in the ICM Cluster-cluster mergers can drive mechanisms for particle accelerations

Radio Relics(?)

Shocks

accelerate CRe[±], CRp: synch. \rightarrow RADIO + generation of IC $\rightarrow \gamma$ rays secondary e^{\pm}

 $p_{cr} p_{th} \rightarrow \pi^0 \rightarrow \gamma$ rays (FERMI)

 $\rightarrow \bullet \rightarrow \text{synch.} \rightarrow \text{RADIO}$

Turbulence

reaccelerates secondaries e[±] and fossil CRe[±], CRp

Hard-X rays via IC scattering off v_{CMB} (NuSTAR, ASTRO-H)

synchrotron in the RADIO (GMRT, LOFAR,..., SKA)

Radio Halos (?)

VCMB

В

e⁺, p

Giant Radio Relics

Diffuse Shock Acceleration (DSA) or first order Fermi mechanism

(e.g. Bell 1978; Drury 1983; Blandford & Eichler 1987; Jones & Ellison 1991)

✓ Relics trace regions where shocks accelerate (reaccelerate) electrons via Fermi I-type mechanisms (e.g. Ensslin et al. 1998; Brüggen et al. 2011; Iapichino & Bruüggen 2012; Vazza et al. 2012; Skillman et al. 2013)

Power-law spectra $N(E) \propto E^{-\delta_{inj}}$ $\delta_{inj} = 2 \frac{M^2 + 1}{M^2 - 1}$ Synchrotron spectra $\Rightarrow \alpha_{inj} = \frac{\delta_{inj} - 1}{2}$ From radio spectral index => estimates of the shock Mach number

 $\alpha = 1.48 \Longrightarrow \mathcal{M} \sim 2.3$

Tycho's Supernova Remnant

Giant Radio Relics – Shock connection

(Markevitch & Vikhlinin 01,07)

van Weeren et al. 2010, Science, 330, 347

Radio Relics and shock acceleration: Open Problems

✓ Merger Shocks with M ~1.5-3 are relatively inefficient as particle accelerators

✓ explaining radio relics with standard DSA over-produce gamma-rays (e.g.; Vazza & Bruggen 14; Brunetti & Jones 14; Griffin et al 14; Vazza et al. 15)

To overcome these problems:

- *alternative* sources of CRe to be reaccelerated via DSA (*e.g.*,*Markevitch et al.* 2005; *Kang et al.* 11)

- alternative mechanism, e.g.; shock drift
acceleration, SDA, (e.g.; Guo, Sironi, Narayan
14a,b) => Efficient CRe acceleration

Kang & Ryu 13; Hong et al. 14

 $\checkmark \mathcal{M}_{radio} > \mathcal{M}_{X-ray}$ (e.g.; Akamatsu & Kawahara 2013; van Weeren et al. sub.) => re-acceleration of fossil plasma (?); shocks with multiple \mathcal{M} (?)

Cosmological Shocks and future radio Surveys

Vazza et al. 15

Future obs. (LOFAR, SKA) could be sensitive to more external shocks (*Nuza et al.* 12; Skillman et al. 13; Vazza et al. 15)

=> more external relics
and intracluster filaments?
(see talk by F. Vazza)

Strong External (accretion) shocks with ${\cal M}$ ~10-100

Weak internal (merger) shocks with \mathcal{M} <3 dissipate more energy than external shocks

Present observations are only sensitive to "internal" (1-2 Mpc from the cluster centre) weak shocks

Bonafede et al. 09

Bagchi et al. 06

(see talk by R. van Weeren)

Giant Radio Halos

The very large scales implies the existence of mechanisms of "in situ" acceleration or injection of CRs on Mpc-scale

What is the origin of the emitting particles in giant Radio Halos?

<u>secondary models</u>: relativistic electrons continuosly injected in the ICM by inelastic proton-proton collisions through productions and decay of charged pions (*e.g.*, *Dennison 1980*, *Blasi & Colafrancesco 1999*, *Dolag & Ensslin* 2000)

 $p_{th} + p_{CR} \rightarrow \pi^{\pm} + \pi^{0} + ... \rightarrow \pi^{0} \rightarrow \gamma \gamma \rightarrow \text{gamma ray}$ $\pi^{\pm} \rightarrow e^{\pm} \rightarrow \text{synchrotron radio}$

CR protons are long living particles and are <u>confined</u> (Voelk et al 1996; Berezinsky et al 1997) → solution to the "diffusion problem" !

Drawbacks of secondary models:

- fail to explain halos with extremely steep spectra (*a*>1.5-1.6; e.g., A521 Brunetti et al. 08; Dallacasa et al. 09; A697 Macario et al 10)
- not a "natural" explanation for rarity and connection with mergers (see also Ensslin et al. 2012 for a different view)
- non-detection of galaxy clusters in the gamma-rays (by FERMI; Jeltema & Profumo 11, Brunetti et al. 12, Ackermann et al. 13, 15; Zandanel & Ando 14)

Need for another mechanism: turbulent re-acceleration?

Miniati & Beresnyak. Nature 523, 59-62 (2015)

A popular idea to explain giant Radio Halos:

merger-driven turbulence injected at few 100 kpc scale cascades (without significant dissipation) to very small scale, ~100 pc, where stocastically re-accelerate CRe (fossil and secondaries) via Fermi II-type mechanisms

(Brunetti et al. 01, 04, Petrosian 01, Kuo et al 02, Fujita et al. 03, Cassano & Brunetti 05, Brunetti & Lazarian 07,11, Donnert et al 13, Beresnyak et al 13; Miniati 15)

Radio Halos : are they generated by "inefficient" mechanism of CRe acceleration ?

Evidence of break in the spectrum of the emitting electrons at energies of few GeV.

$$\begin{split} \tau_{\rm e}({\rm Gyr}) &\sim 4 \times \left\{ \frac{1}{3} \left(\frac{\gamma}{300} \right) \left[\left(\frac{B_{\mu G}}{3.2} \right)^2 \frac{\sin^2 \theta}{2/3} + (1+z)^4 \right] \\ &+ \left(\frac{n_{\rm th}}{10^{-3}} \right) \left(\frac{\gamma}{300} \right)^{-1} \left[1.2 + \frac{1}{75} \ln \left(\frac{\gamma/300}{n_{\rm th}/10^{-3}} \right) \right] \right\}^{-1}. \end{split}$$

acceleration time-scale ≈10⁸ years

Acceleration mechanism not efficient ! eg., "classical" Fermi II

> 10⁷yrs

Radio Halos and turbulent re-acceleration: Open Problems

see Brunetti & Jones 2014, for a recent review

✓ Which is the role of secondaries?

Fermi γ -ray upper limits challenge a pure hadronic model => secondaries should be present at some level in the ICM (e.g.; Brunetti & Lazarian 11; Zandanel et al. 14)

✓ <u>Composition and origin of seed particles</u>? Relic electrons from AGN, galaxies and secondaries (*e.g.; Brunetti et al. 01,...Pinzke et al. 15*)

 Physics of turbulent re-acceleration: How merger-driven turbulence is transported to small scales? How the the turbulent spectrum change with time on resonant scale? (e.g., Brunetti & Lazarian 07; Miniati 15, Brunetti 15)

✓ Impact on the <u>microphysics of the ICM</u>?

(e.g., viscosity, conduction, heating of the plasma, plasma instabilities) e.g.; Schekochihin et al 08,10, Lazarian & Beresniak 06, Brunetti & Lazarian11, Santos-Lima et al 14

LOFAR and SKA1-LOW will explore low massive clusters ($M_{500} \sim 10^{14} M_{\odot}$) that are $\sim 100+$ times more numerous than clusters observable by present facilities.

Going to smaller masses does not necessarily imply that more (much more) RHs will be found ! This depends on the occurrence of RH in smaller systems (MODELS!)

To summarize ... (a message for observers!)

possible tests of this scenario can be done by finding:

✓ A DROP OF THE FRACTION OF CLUSTERS WITH RHS AT LOWER MASSES

✓ AN INCREASE OF THE FRACTION OF CLUSTERS WITH RH TOWARDS LOW RADIO FREQUENCY

✓ THE EXISTENCE OF ULTRA-STEEP SPECTRUM RH (USSRH, α >1.5)

How many RHs await discovery in future radio surveys? from Monte Carlo simulations (see also Cassano et al. 10, 12, 15)

LOFAR-HBA (rms=150 µJy/beam) and SKA1-LOW (rms=20 µJy/beam) surveys:

- detection of clusters with RH up to high z
- competitive with X-ray and SZ-survey in the detection of galaxy clusters

- SKA1 will provide fundamental complementary information to the nextgeneration of multi-wavelength surveys (DES, LSST, Euclid, eROSITA)

Conclusions

Halos and Relics probe CRs and magnetic fields on Mpc-scale in ICM

Present scenario: Halos trace turbulent regions in the ICM where particles are trapped and accelerated during mergers, while Relics trace site of particle acceleration at merger shocks

Not a full understanding of turbulent and shock acceleration in the ICM

Impact on the ICM micro-physics !

The future is bright: SKA pathfinders and precursors (LOFAR, MeerKAT, ASKAP), SKA1-LOW and SKA1-MID have the potential to test the present scenarios for Halos and Relics, possibly unveiling the *emergence of the iceberg of NT phenomena in Galaxy Clusters*

-Only a ~40 Halos and Relics are known so far:

1-2 GHz SKA1-MID=> ~750 ASKAP(EMU)=> ~300 150-200 MHz SKA1-LOW=> ~2600 RH LOFAR=> ~500 RH