

The third *Fermi* catalogues of gamma-ray sources and active galactic nuclei

Marcello Giroletti

(INAF Osservatorio di Radioastronomia) on behalf of the Fermi-LAT collaboration

- Introduction: Fermi and gamma-ray surveys
- The third catalogue of gamma-ray sources (3FGL)
- The third catalogue of gamma-ray AGNs (3LAC)
- Cross-matching high energy and low frequency data (3LAC-MWACS)

The Large Area Telescope (LAT) onboard *Fermi*

- A gamma-ray telescope launched in June 2008
 - -20 MeV 300 GeV photon energies
 - -2.4 steradian field of view
 - -A_{eff}:~8000 cm² at 1 GeV

- -PSF: θ_{68%}~0.8° at 1 GeV
- -altitude: 565 km, inclination: 25.6°
- 91 min orbital period: views the entire sky every ~3 hours and provides uniform sensitivity over whole sky in ~day time scale. Great opportunities for
 - transients
 - MWL campaigns on single sources
 - <u>all sky survey and population</u> <u>studies</u>
- -public data, available within 12 h
- operation guaranteed until 2018

The Third *Fermi* gamma-ray source catalogue (3FGL, Acero et al. 2015 ApJS)

- 4 years of survey data
- Energy range 100 MeV 300 GeV
- 3033 sources

∍ermi

- 2192 at |b|>10°
- 1100 un-associated
- 25 spatially extended

Evolution of Fermi catalogues

scope						
catalogue	integration	#sources	% of unassociated sources	reference		
0FGL	3 months	205	18%	Abdo et al. (2009)		
1FGL	11 months	1451	43%	Abdo et al. (2010)		
2FGL	2 years	1873	31%	Nolan et al. (2012)		
3FGL	4 years	3033	33%	Acero et al. (2015)		

- Catalogues improve not only thanks to longer exposure but also to improved analysis method
 - instrument characterisation, diffuse model, counterpart catalogues, etc.
- Each catalogue is accompanied by an AGN catalogue – 0LAC, 1LAC, 2LAC, 3LAC (later slides)
- Other catalogues have been produced focused on specific classes or energy ranges
 - hard sources, pulsars, GRBs

pace Tel

a quick blazar introduction

• Blazars=flat spectrum radio quasars (FSRQ)+BL Lac type objects (BLL)

- beamed counterparts of radio galaxies, dominated by emission from relativistic jets powered by accretion on SMBH
 - -FSRQ: strong lines in optical spectra, prominent accretion disk signature, high radio and bolometric luminosity (FR2 counterparts), "red" SEDs
 - -BLL: weak or no lines, radiatively inefficient accretion disk, low luminosity (FR1 counterparts), "blue" SEDs

40% of BL Lacs in Southern Hemisphere

Redshifts

Gamma-ray Space Telescope

 slightly higher z for new FSRQs relative to 2LAC ones

- <z>=1.33 vs. 1.17

- maximum redshift still z=3.1
- 295/604 BL Lacs have no measured redshifts (55%, 61%, 40%) for (LSPs, ISPs and HSPs)
 - 134 constraints from Shaw et al. (2013)
 - Redshift limits for BL Lacs not compatible with measured redshifts
 - measured redshifts are biased low
 - Are many BL Lacs FSRQs with emission lines swamped by the nonthermal continuum?

Gamma-ray Space Telescope

Spectral photon index vs v_{peak}

- Correlation between spectral hardness and vpeak confirmed
- Lowest index~1.5, as predicted by shock-acceleration models
- Same correlation applies to BCUs

Radio/gamma-ray connection

Dermi

 In 3FGL, still a ~1/3 unassociated fraction (>1000 sources!)

pace Telescope

- Association of high energy sources to low energy counterparts is generally based on chance of random spatial coincidence
 - -works well for medium-bright gamma-ray sources
 - low gamma-ray fluxes ~ low radio flux densities ~ high space density
 - low gamma-ray fluxes ~ large positional uncertainties
 - so: way too many candidates if we only consider spatial coincidence
- Need to add some physics, e.g. VLBI detection, low frequency spectral index, IR colors
 - -e.g. Massaro et al. (2013), Nori et al. (2014), Schinzel et al. (2013), Lico et al. (in prep.)

- Waiting for SKA and other pathfinder/precursor surveys
 - MWA commissioning survey (MWACS, Hurley-Walker et al. 2015)
 - simultaneous 120, 150, 180 MHz data
 - 6100 sq deg
 - 120 mJy limiting sensitivity, 3' angular resolution
 - 14110 sources... how many (gamma-ray) blazars?
 - 186 from BZCat (over 517 sources in same sky area)
 - 88 from 3LAC (over 249)
 - given relatively large flux density threshold, mostly are FSRQs

	BZCat		3LAC	
Total	186/517	36%	88/247	35%
FSRQ	147/327	45%	52/71	73%
BLLacs	23/153	15%	19/87	22%
BCU	16/37	43%	8/16	50%
candidates			8/73	11%

- From the BZCat, MWACS detects preferably the brightest blazars
- however, there are several undetected **BZCat sources** that have S_{1 GHz} larger than the MWACS threshold (dotted line)
 - these must be inverted-spectrum sources!

- entire MWACS
 - $<\alpha_{low}>= 0.81 \pm 0.01$
- blazars
 - $<\alpha_{low}>= 0.51 \pm 0.05$
- gamma-ray blazars
 - $<\alpha_{low}>= 0.47 \pm 0.09$

MWACS-Fermi connection

- no significant correlation between S_{MWACS} and 3FGL energy flux
 - 82 sources
 - r=0.27

- p=0.06
- search for UGS counterparts
 - 13 MWACS matches are found within r95 of all 3FGL un-associated sources
 - but on average 15 are found starting from a fake gamma-ray sky!
- there is potential, but better surveys are needed!
 - fortunately, they're on their way!

- For blazars (and not only), gamma rays are the energy band in which most power is radiated
- Fermi has taken gamma-ray source counts at least even with radio surveys from the '70s!
- Great prospects for synergies between radio and gamma-ray surveys for study of the non-thermal universe

Blazar luminosity functions

Dermi

Gamma-ray

- Rise in HSP-BL Lac density corresponds to a drop-off in FSRQ density
- Evolution of FSRQS into HSPs due to starvation of accreting matter?

