LOFAR Survey of Spatially Resolved Ultra-Steep Spectrum Sources

(High-redshift Radio Galaxies at Low Frequencies)

Leah Morabito

Adam Deller, Javier Moldon, Raymond Oonk, George Miley, Huub Röttgering, + LB working group

Leiden Observatory

The Many Facets of Extragalactic Radio Surveys 23 October 2015

Why are HzRGs important?

protocluster environments

False color Herschel/SPIRE, Rigby+ (2014)

radio galaxy formation & evolution

Image Credit: www.firstgalaxies.org

HzRGs: Characteristics

Open questions...

<u>Selection</u> from Miley & De Breuck (2008):

* What is the particle acceleration mechanism in the relativistic plasma and why do HzRGs have much steeper radio spectra than nearby radio sources?

* What are the detailed processes by which the radio jets interact with the gas and trigger starbursts and how important is jet-induced star formation for producing stars in the early Universe?

* What effect does feedback between the AGN and the galaxy have on the evolution of HzRGs and the general evolution of massive galaxies?

* What is the detailed mechanism by which the SMBHs produce quasars and luminous collimated jets?

* What is the size distribution of radio-selected protoclusters and what is is the topology of the cosmic web in the neighbourhood of the HzRGS?

Open questions...

Selection from Miley & De Breuck (2008):

* What is the particle acceleration mechanism in the relativistic plasma and why do HzRGs have much steeper radio spectra than nearby radio sources?

* What are the detailed processes by which the radio jets interact with the gas and trigger starbursts and how important is jet-induced star formation for producing stars in the early Universe?

* What effect does feedback between the AGN and the galaxy have on the evolution of HzRGs and the general evolution of massive galaxies?

* What is the detailed mechanism by which the SMBHs produce quasars and luminous collimated jets?

* What is the size distribution of radio-selected protoclusters and what is is the topology of the cosmic web in the neighbourhood of the HzRGS?

Ultra Steep Spectra Why do high-*z* sources have USS?

Morabito

Ultra Steep Spectra Why do high-*z* sources have USS?

Ultra Steep Spectra (USS) Why do high-*z* sources have USS?

- * Concavity at lower frequencies + K-correction
 - Higher redshift \rightarrow probe higher rest frequencies

Afonso et al. (2011), Miley & De Breuck (2008), Klamer et al. (2006), Athreya et al. (1998)

- * Higher ambient density
 - Reduce bulk velocity → steeper spectra Klamer et al. (2006), Miley & De Breuck (2008), Athreya et al. (1998)
- * Luminosity– α relation + observational flux limits
 - Higher *L* → more powerful jets → steeper spectra Blundell et al. (1999)

Ultra Steep Spectra (USS) Why do high-*z* sources have USS?

- * Concavity at lower frequencies + K-correction
 - Higher redshift \rightarrow probe higher rest frequencies

Afonso et al. (2011), Miley & De Breuck (2008), Klamer et al. (2006), Athreya et al. (1998)

- * Higher ambient density
 - Reduce bulk velocity → steeper spectra Klamer et al. (2006), Miley & De Breuck (2008), Athreya et al. (1998)
- * Luminosity– α relation + observational flux limits
 - Higher $L \rightarrow$ more powerful jets \rightarrow steeper spectra Blundell et al. (1999)

External: environmental, observational vs. **Internal:** particle acceleration processes

Ultra Steep Spectra (USS) Why do high-*z* sources have USS?

- * Concavity at lower frequencies + K-correction
 - Higher redshift \rightarrow probe higher rest frequencies

Afonso et al. (2011), Miley & De Breuck (2008), Klamer et al. (2006), Athreya et al. (1998)

- * Higher ambient density
 - Reduce bulk velocity → steeper spectra Klamer et al. (2006), Miley & De Breuck (2008), Athreya et al. (1998)
- * Luminosity– α relation + observational flux limits
 - Higher *L* → more powerful jets → steeper spectra Blundell et al. (1999)

External: environmental, observational vs. **Internal:** particle acceleration processes

To resolve: need low frequencies & high resolution

Morabito

USS Survey

USS Survey: Goals

Low resolution Imaging

1. Characterize integrated low- ν spectra

USS Survey: Goals

Low resolution Imaging

1. Characterize integrated low- ν spectra

High resolution Imaging

- 2. Study spatially resolved spectra to constrain physical processes
 - Determine spatial distribution of low- ν electrons
 - Compare lobes with each other as probe of environmental conditions

USS Survey: Goals

Low resolution Imaging

1. Characterize integrated low- ν spectra

High resolution Imaging

- 2. Study spatially resolved spectra to constrain physical processes
 - Determine spatial distribution of low- ν electrons
 - Compare lobes with each other as probe of environmental conditions
- 3. Search for carbon radio recombination lines
 - Probe of cold neutral medium

Morabito

Morabito

Morabito

Morabito

Morabito

Low Resolution Imaging

- baselines up to 83 km
- FoV: 8° @ 60 MHz
- FWHM: 10"@ 60 MHz
- HzRGs not resolved

7 deg / 1.95 MHz bandwidth / 7.5 mJy rms

Low Resolution Imaging Preliminary Results

Some ultra-steep spectra remain ultra steep. Others may be starting to turn over. Can spatially resolved images help solve this?

Morabito

USS @ low- ν

What are some of the issues?

Sensitivity	LBA has poor signal to noise
Clocks	All stations are connected, only CS are on the same clock
Correlator Model	Baselines up to 1300 km lead to ge- ometric errors/delays
Ionosphere	Can be wildly varying, larger differ- ential impact on long baselines
Calibrators	Need compact, bright sources at low- ν very few known

What are some of the issues?

Sensitivity	LBA has poor signal to noise
Clocks	All stations are connected, only CS are on the same clock
Correlator Model	Baselines up to 1300 km lead to ge- ometric errors/delays
Ionosphere	Can be wildly varying, larger differ- ential impact on long baselines
Calibrators	Need compact, bright sources at low- ν very few known

Traditional VLBI techniques can be used (fringe-fitting)

Morabito

What are some of the issues?

	Sensitivity	LBA has poor signal to noise
	Clocks	All stations are connected, only CS are on the same clock
Cor	relator Model	Baselines up to 1300 km lead to ge- ometric errors/delays
	Ionosphere	Can be wildly varying, larger differ- ential impact on long baselines
	Calibrators	Need compact, bright sources at low- $ u$ very few known

Traditional VLBI techniques can be used (fringe-fitting)

Morabito

0.147948 01

1.6 GHz MERLIN

Akujor et al. (1990)

3C 147

Morabito

4C +39.37

Morabito

USS @ low- ν

4C +39.37

4C3937SC3AP.FITS-raster

Morabito

USS @ low- ν

4C +39.37

4C3937SC3AP.FITS-raster

Morabito

USS @ low- ν

 $\Delta \nu$ =14 MHz rms = 150 mJy bm⁻¹ 4.25 hr

First LBA image using full International LOFAR!

Morabito

USS @ low- ν

Summary

High resolution imaging at low- ν is possible! Low Frequency observations are revealing:

- 1. HzRG integrated spectra show variety
- 2. Spatial distribution is similar to higher frequencies

Future work:

- Calibration of intermediate baselines
- Tie together flux scale of longest & shortest
 baselines

Processing rest of survey ... stay tuned!

Morabito

· USS @ low- ν

