High-resolution molecular line observations of radiogalaxies

Santiago GARCIA-BURILLO
Observatorio Astronómico Nacional (OAN)-Spain

In collaboration with: F. Combes, A. Fuente, A. Usero, R. Neri, S. Leon & J. Lim

The Fourth CSS/GPS workshop. 26-29 May 2008, Riccione, Italy
Molecular gas makes most of the gas mass in galaxy nuclei, also in radiogalaxies!

Most studies to date are low-resolution CO surveys, however...

(e.g., Lim et al 2003; Prandoni et al 2007; Ocaña-Flaquer et al 2008)
Molecular gas makes most of the gas mass in galaxy nuclei, also in radiogalaxies!

Most studies to date are low-resolution CO surveys, however...

(e.g., Lim et al 2003; Prandoni et al 2007; Ocaña-Flaquer et al 2008)

High-resolution (<1") observations in mm-λ key to mapping molecular line **emission** and **absorption** in radiogalaxies (e.g., in CSOs)

Minimize confusion between emission and absorption in the beam
Molecular gas makes most of the gas mass in galaxy nuclei, also in radiogalaxies!

Most studies to date are low-resolution CO surveys, however...

(e.g., Lim et al 2003; Prandoni et al 2007; Ocaña-Flaquer et al 2008)

High-resolution (<1") observations in mm-λ key to mapping molecular line **emission** and **absorption** in radiogalaxies (e.g., in CSOs)

Minimize confusion between emission and absorption in the beam

Emission + **absorption** lines needed to provide 2D-view of molecular disks

Interpretation of ‘only’ absorption lines hazardous: inflow? outflow?
Molecular gas in radiogalaxies

Our project...

A molecular line study of two nearby radiogalaxies made with the IRAM Plateau de Bure interferometer (PdBI): a CSO (4C31.04) and a FRII (3C293)

- Spatial resolution: 0.′′3–1.′′2
- Frequency range: 88 GHz–230 GHz

Several species/lines adapted to probe the emission and absorption of molecular gas in the circumnuclear disks of radiogalaxies

- CO(1-0), CO(2-1), HCO+(1-0), HCN(1-0)
Molecular gas in radiogalaxies

Our project…

A molecular line study of two nearby radiogalaxies made with the IRAM Plateau de Bure interferometer (PdBI): a CSO (4C31.04) and a FRII (3C293).

- Spatial resolution: 0."3--1".2
- Frequency range: 88 GHz-230 GHz

Several species/lines adapted to probe the **emission** and **absorption** of molecular gas in the circumnuclear disks of radiogalaxies:

- CO(1-0), CO(2-1), HCO+(1-0), HCN(1-0)

gas content: N_{gas} , M_{gas} , distribution , kinematics?
Molecular gas in radiogalaxies

Our project...

A molecular line study of two nearby radiogalaxies made with the IRAM Plateau de Bure interferometer (PdBI): a CSO (4C31.04) and a FRII (3C293)

- Spatial resolution: 0.3–1.2
- Frequency range: 88 GHz–230 GHz

Several species/lines adapted to probe the emission and absorption of molecular gas in the circumnuclear disks of radiogalaxies:

- CO(1-0), CO(2-1), HCO+(1-0), HCN(1-0)

Gas content: \(N_{\text{gas}} \), \(M_{\text{gas}} \), distribution, kinematics?

Explore evolutionary links between different types of radiogalaxies

Are CSOs and FRII connected? Are CSOs young or frustrated sources?
CSOs: the case of 4C31.04

- CSO associated with nucleus of giant elliptical MCG 5-4-18

- Companion spiral at 20 kpc (MCG 5-4-17)

- Other fainter objects in the group.

- No signs of tidal tails or large-scale ongoing interaction.

HST optical picture (R-band) from Perlman et al 2001
CSOs: the case of 4C31.04

Prototypical CSO: compact radio source at cm-λ: ~100 pc size

- Faint point-like core
- Two extended lobes on ~20-40pc
- Expansion of lobes: 0.1pc/yr (Giroletti et al. 2003)
- No jet --> close to sky plane

VLBA image @5GHz (2mas beam) from Giovannini et al. 2001
Nucleus shows obscuration features in HST optical images.

Two cone-like nebulosities extend perpendicular to dust features on ~kpc scales.

Optical nebulosities aligned with radio axis.

Signature of gas shocked by jet? (e.g., Labiano et al. 2003)
Anatomy of the dusty nucleus: HST R-H color images

Edge-on ~1 kpc dusty disk perpendicular to radio axis.

Extended ~3 kpc spiral-like structure connected to disk.

Shell-like features around cones?

HST R-H color image from Perlman et al 2001
4C31.04

HST optical pictures

HST extinction map: how much dust/mass in 4C31.04?

- Total extinction A_B image from Perlman et al 2001

- Average A_B extinction = 0.5^m

- Maximum $N(H)$ towards disk:

 $N(H) \sim 3 \times 10^{21} \text{cm}^{-2}$

- $M_{\text{dust}} \sim 5 \times 10^5 M_{\text{sun}}$

 $M_{\text{gas}} \sim 5 \times 10^7 M_{\text{sun}}$

- Consistent with HI absorption

 $M_{\text{gas}} \sim 10^8 M_{\text{sun}}$ at $R < 150 \text{pc}$

(Conway 1996)
Continuum emission detected at **1mm** (230 GHz) and **3mm** (89 GHz)
Continuum emission at 3mm hardly resolved with 1.2''x0.6'' beam

~160mJy, on AGN

S_ν \sim ν^{-α}, α\sim1-2, 89-230 GHz

non-thermal emission
A dusty disk in 4C31.04

Continuum emission at 1mm spatially resolved with 0.5″x0.24″ beam

PdBI maps

A dusty disk in 4C31.04

Continuum emission at 1mm spatially resolved with 0.5´´x0.24´´ beam

POINT-source

~40mJy, on AGN

non-thermal emission

R-H color (colour scale) + 1mm@230GHz (contours)
Continuum emission at 1mm spatially resolved with 0.5´´x0.24´´ beam

~40mJy, on AGN

~20mJy, linked to dusty disk

1”x0.1” (1.1 kpc x 0.1 kpc)-size

Truly dust emission: no free-free!
PdBI maps

A dusty disk in 4C31.04

DISK:

1-component fit (30K)
IRAS(100μm,60μm)

M_{dust} (warm) \sim 6 \times 10^7 M_\text{sun}

M_{gas} \sim a few \times 10^{10} M_\text{sun}

2-component fit (15K, 30K)
IRAS(100μm,60μm)+PdBI(230GHz)

M_{dust} (total) \sim 5 \times 10^8 M_\text{sun}

R-H color (colour scale) + 1mm@230GHz (contours)
PdBI maps

A dusty disk in 4C31.04

DISK:

M_{gas}?

$M_{\text{gas}}(1\text{mm-continuum}) \gg M_{\text{gas}}(\text{HI})$

$M_{\text{gas}}(1\text{mm-continuum}) \gg M_{\text{gas}}(A_v)$

R-H color (colour scale) + 1mm@230GHz (contours)
PdBI maps

A dusty disk in 4C31.04

M_{gas} (1mm) \sim (10-100) \times M_{gas} (HI)

M_{gas} (1mm) \sim 100 \times M_{gas} (A_v)

DISK: M_{gas} ?
Molecular gas **emission** + **absorption** in HCO$^+$J=1-0 line over \sim1200 km/s$^{-1}$

HCO$^+$(1-0) line emission and absorption towards AGN core
Molecular gas **emission** + **absorption** in HCO$^+$ J=1-0 line over ~1200 km s$^{-1}$

Emission over ~ 950 km s$^{-1}$
- I[-300, 25] km s$^{-1}$
- III[275, 900] km s$^{-1}$
- $n(H_2) \geq 10^4$ cm$^{-3}$

Absorption over ~ 250 km s$^{-1}$
- II[25, 275] km s$^{-1}$
- $n(H_2) \sim 10^3$ cm$^{-3}$

$HCO^+(1-0)$ line emission and absorption towards AGN core

PdBI maps

A molecular disk in 4C31.04

PdBI maps

A molecular disk in 4C31.04

HCO⁺ emission is spatially resolved → an ~edge-on ~1.4 kpc rotating disk

Emission over ~ 950 km s⁻¹
I[275, 900] km s⁻¹
I[-300, 25] km s⁻¹

Absorption over ~ 250 km s⁻¹
II[25, 275] km s⁻¹

HCO⁺ channel maps I,II,III (contours) over HST R-band (colour)
HCO\(^{+}\) emission is spatially resolved → an ~edge-on ~1.4 kpc rotating disk

Emission over ~ 950 km s\(^{-1}\)
I\([275, 900]\) km s\(^{-1}\) : peaks NE
I\([-300, 25]\) km s\(^{-1}\)

Absorption over ~ 250 km s\(^{-1}\)
II\([25, 275]\) km s\(^{-1}\)

HCO\(^{+}\) channel maps I,II,III (contours) over HST R-band (colour)
HCO$^+$ emission is spatially resolved → an ~edge-on ~1.4 kpc rotating disk

Emission over ~ 950 km s$^{-1}$

II$^-[25, 275]$ km s$^{-1}$: peaks SW

Absorption over ~ 250 km s$^{-1}$

II$^[25, 275]$ km s$^{-1}$
HCO⁺ emission is spatially resolved → an ~edge-on ~1.4 kpc rotating disk

Emission over ~ 950 km s⁻¹
I[275, 900] km s⁻¹
I[−300, 25] km s⁻¹

Absorption over ~ 250 km s⁻¹
II[25, 275] km s⁻¹: peaks at AGN

PdBI maps

A molecular disk in 4C31.04

HCO⁺ channel maps I, II, III (contours) over HST R-band (colour)
HCO$^+$ emission is spatially resolved → an ~edge-on ~1.4 kpc rotating disk

Emission over ~ 950 km s$^{-1}$
I$[275, 900]$ km s$^{-1}$
I$[-300, 25]$ km s$^{-1}$

Absorption over ~ 250 km s$^{-1}$
II$[25, 275]$ km s$^{-1}$: peaks at AGN

HCO$^+$ channel maps I,II,III (contours) over HST R-band (colour)
PdBI maps

A molecular disk in 4C31.04

An edge-on molecular rotating disk

HCO⁺ channel maps I,II,III (contours) over HST R-band (colour)

Position-velocity strip of HCO⁺ along A-B
PdBI maps

A molecular disk in 4C31.04

Distribution + kinematics of molecular gas are **distorted**

The disk is asymmetrical...

$I[\text{HCO}^+] \text{ (NE)} \sim 3 \times I[\text{HCO}^+] \text{ (SW)}$

The disk is tilted...

HCO$^+$ disk is tilted with respect to dust disk

HCO^+ emission ch-I,III (white+blue-contours) and dust-emission (black contours) over HST R-H image (colour)
PdBI maps

A molecular disk in 4C31.04

Distribution + kinematics of molecular gas are **distorted**

HCO⁺ emission in ch-III (contours) and over HST R-band image

The disk thickens north...

Interaction with optical nebulosities?
PdBI maps | A molecular disk in 4C31.04

Kinematics: evidence of strong **non-circular motions**

- If v_{sys} fitted on emission profile, absorption is $150\text{km} \cdot \text{s}^{-1}$ blueshifted with respect to v_{sys}
- Non-circular motions projected?

- Disk not dynamically relaxed
- Settling down after merger?
- Interacting with other phases of ISM?

HCO^+(1-0) line emission and absorption towards AGN core
PdBI maps

A molecular disk in 4C31.04

From HCO\(^+\) (1-0) line emission, we estimate \(M_{\text{dense-gas}}\) and \(M_{\text{gas}}\):

\[M_{\text{dense-gas}} \approx (0.5 - 4) \times 10^9 \, M_{\odot}, \quad n(H_2) > 10^4 \, \text{cm}^{-3}\]

\[M_{\text{gas}} \approx 10 \times M_{\text{dense-gas}} \approx (0.5 - 4) \times 10^{10} \, M_{\odot}, \quad n(H_2) > 10^3 \, \text{cm}^{-3}\]
Estimates from dust emission and HCO\(^+\) line emission give both:

\[M_{\text{gas}} \sim 10^{10} \ M_{\odot} \sim \text{10-100 larger} \] than derived from HI or \(A_v \) maps.
PdBI maps

A molecular disk in 4C31.04

Estimates from dust emission and HCO$^+$ line emission give both:

$$M_{\text{gas}} \sim 10^{10} M_{\text{sun}} \text{ ~10-100 larger than derived from HI or } A_v \text{ maps}$$

Estimates from HCO$^+$ line absorption give:

$$N_{\text{gas}} \sim (0.5-1.5) \times 10^{22} \text{ cm}^{-2} \text{ ~10-100 larger than derived from HI or } A_v \text{ maps}$$
Conclusions

Discovery of a massive molecular/dusty disk fueling the nucleus of 4C31.04

\[M_{\text{gas}} \sim 10^{10} M_{\text{sun}} \ (M_{\text{mol}} >> M_{\text{HI}}) \]

\[M_{\text{gas}} [4C31.04] \sim M_{\text{gas}} [\text{ULIRGs}] ! \]
Conclusions

Discovery of a massive molecular/dusty disk fueling the nucleus of 4C31.04

\[M_{\text{gas}} \sim 10^{10} M_{\text{sun}} \quad (M_{\text{mol}} \gg M_{\text{HI}}) \]

\[M_{\text{gas}} [4C31.04] \sim M_{\text{gas}} [\text{ULIRGs}]! \]

The huge \(M_{\text{gas}} \) does not favour ‘frustration’ scenario for 4C31.04, though:

The bulk of the gas is in rotating disk perpendicular to jet
Conclusions

Discovery of a massive molecular/dusty disk fueling the nucleus of 4C31.04

\[M_{\text{gas}} \sim 10^{10} M_{\text{sun}} \quad (M_{\text{mol}} > M_{\text{HI}}) \]

\[M_{\text{gas}} \, [\text{4C31.04}] \sim M_{\text{gas}} \, [\text{ULIRGs}] ! \]

The huge \(M_{\text{gas}} \) does not favour ‘frustration’ scenario for 4C31.04, though:

The bulk of the gas is in rotating disk \textit{perpendicular} to jet

Evidence that disk is not dynamically relaxed

\textit{Settling down after merger or interacting with other phases of ISM?}
Conclusions

Discovery of a massive molecular/dusty disk fueling the nucleus of 4C31.04

\[M_{\text{gas}} \approx 10^{10} M_{\text{sun}} \quad (M_{\text{mol}} \gg M_{\text{HI}}) \]

\[M_{\text{gas}} [\text{4C31.04}] \approx M_{\text{gas}} [\text{ULIRGs}]! \]

The huge \(M_{\text{gas}} \) does not favour ‘frustration’ scenario for 4C31.04, though:

The bulk of the gas is in rotating disk \textit{perpendicular} to jet

Evidence that disk is not dynamically relaxed

Settling down after merger or interacting with other phases of ISM?

Work in progress….

PdBI Inferferometer maps in CO lines of 4C31.04

VLBI mapping of molecular absorption in 4C31.04

Comparison between CSOs and FRII: observations of 3C293
Conclusions

Discovery of a massive molecular/dusty disk fueling the nucleus of 4C31.04

\[M_{\text{gas}} \sim 10^{10} M_{\text{sun}} \ (M_{\text{mol}} \gg M_{\text{HI}}) \]

\[M_{\text{gas}} [4C31.04] \sim M_{\text{gas}} [\text{ULIRGs}] ! \]

The huge \(M_{\text{gas}} \) does not favour ‘frustration’ scenario for 4C31.04, though:

The bulk of the gas is in rotating disk perpendicular to jet

Evidence that disk is not dynamically relaxed

Settling down after merger or interacting with other phases of ISM?

Work in progress....

PdBI Interferometer maps in CO lines of 4C31.04

VLBI mapping of molecular absorption in 4C31.04

Comparison between CSOs and FRII: observations of 3C293